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The World is not Random



The World has Structure

Space of Forms Real World




Intelligent Agents must capture this Structure

* To solve goals, intelligent agents must
understand the world

* Their internal representation must
capture the structure of the world
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Capturing Structure with Al

Geometric Deep Learning
Grids, Groups, Graphs,
Geodesics, and Gauges

e AI systems face the same problem: how do
we capture regularities of the world?

Michael M. Bronstein!, Joan Bruna?, Taco Cohen?, Petar Veli¢kovié*

* We try to bake in some symmetries vy
through architecture design

* Inductive bias

e.g. image with global symmetries, e.g. social network

e.g. sphere

Convolutional Translation Attention Permutation
Architecture Equivariance Architecture Equivariance
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Capturing Structure with Al

_ . Lightin
* What about everything else? Architecture Invgrian%e

? o

* Example: lighting invariance

* How do you capture lighting invariance?

e We don’t know

e Solution: train on lots of data with SGD
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Does this Work?




Hypothesis: Fractured Entangled Representations

iz

Good Adaptability
output

behavior

* Conventional SGD training finds
neural representations which are
fractured and entangled

Poor Adaptability

* Doesn’t capture the underlying
regularities of the world

e Position: Open-Ended Search

ma.y.be the SOlUthn to learn Unified Factored Fractured Entangled
unified and factored neural Representation Representation
representations

’ Internal_rep[esentatlop ?ﬁec’(s Open-Ended Conventional
generalization, creativity, and Search SGD

continual learning




Compositional Pattern Producing Network
(CPPN)

* Toy domain to study neural representations: implicitly represent an image
* Inspired by biological developmental process

 Easy to visualize how output behavior is internally represented, neuron by neuron

CPPN CPPN Output Behavior
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CPPNs are an Analogy

CPPNs are a useful visual analogy to think about LLMs
CPPN’s output image <= LLM'’s output behavior

CPPN’s internal visualization <= LLM'’s internal representation
* Visualize how behaviors are actually constructed holistically
Two CPPNs may have same output, but inner encodings could be qualitatively different

* Two LLMs may have same behavior, but their inner representation might be
qualitatively different

10



Picbreeder!

* Online website for humans to breed images to
their desire

* Evolve the underlying CPPNs

| -

\
e *NEAT based CPPNs k

* No end goal, do whatever you want!
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What Do You Expect to Find?
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What People Actually Found!
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Why Greatness Cannot be Planned

* Many insights on the nature of search Kenneth 0. Stanley - Joel Lehman
e Deception Why Greatness
+ Serendipity Cannot Be Planned

* Open-Endedness

e (Case studies:
e Natural Evolution
e Scientific Innovation

@_ Springer
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Picbreeder has Intriguing Properties
Opn—Ended
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Picbreeder has Intriguing Properties
Open-Ended




Picbreeder has Intriguing Properties

Serendipitous Exaptation

* When a trait evolved for one function but gets repurposed for another function
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Picbreeder has Intriguing Properties

Serendipitous Exaptation

Stepping stone to the Teapot Stepping stone to the Butterfly
@ .
™ : Evﬁ
Stepping stone to the Skull Stepping stone to the Penguin

= O

Stepping stone to Jupiter Stepping stone to the Lamp
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Picbreeder has Intriguing Properties

Emergence of Evolvability

* Natural evolution has developed adaptable genotypes:
* Canalization
 Regularity
* Modularity
* Symmetry

* Certain axes of variation become more likely while
others become impossible

human o ) > chicken

radial symmetry bilateral symmetry

crocodile
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Picbreeder has Intriguing Properties

Emergence of Evolvability

4 Most Picbreeder images N/ Some Picbreeder images

feature forms of canalization

show poor canalization

Mutating single genes of these images
holistically affects distinct aspects of the image

Mutation in Mutation in Mutation in
Object Only Shadow Only jSpotlight Only

Offspring
after single
mutation

These images have a structurally organized
(i.e. modular and hierarchical) genome
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Mutating single genes of these images
affects none or many parts of the image

Mutation in Mutation in Mutation in
No Effect Eye And Body Distortion
gene gene gene

Offspring
after single
mutation

These images have little structural
organization in their genome
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S Look Into an Image

Let

Great,




Learning the Picbreeder Skull with SGD

e | et’s train a conventional network to recreate the skull
e Perfect reconstruction!

Picbreeder Skull SGD Traininc SGD Skull
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Layerization

* Convert everything to a universal architecture space: MLP
* Existence proof of Picbreeder solution MLP weight space
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* Convert everything to a universal architecture space: MLP
* Existence proof of Picbreeder solution MLP weight space

Layerization
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Picbreeder Skull

25

© L[]

HEEEEEEENINE
IIIIIIIIIEII

IlﬁwalllllﬁE
:%

Bfolofofofofo
EnnmeL

19AeT

Unified Factored Representation

HEEEEEEREN-
wlefafalafalafalel«p
SEIEIEIEAEAE AR AEY -
-+ [ s o

Neuron



Fractured Entangled Representation

SGD Skull
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Weight ID

Picbreeder Skull

Unified Factored Representation

Controls Mouth Opening

Aw=-1 Aw =0 Aw = +1
Sweeping Weight Value

SGD Skull

Fractured Entangled Representation

Sweeping Weight Value
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Picbreeder Butterfly

Unified Factored Representation
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Fractured Entangled Representation

SGD Butterfly



Weight ID
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Picbreeder Butterfly SGD Butterfly

Unified Factored Representation Fractured Entangled Representation

Controls Wing Area

IV

Controls Color

1949

3702

Converts Butterfly to Fly

e e ki

Controls Vertical Shape

LeLalkalg,

Weight ID

133

b
Aw=-1 Aw =0 Aw = +1
Sweeping Weight Value Sweeping Weight Value
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Unified Factored Representation

Picbreeder Apple
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Fractured Entangled Representation

SGD Apple

A8R® 00009008 Bs €N ETES 9000 NN o/0mE
BB $)9)2)90)B)e) 0k DY $)S KBGO LK N
I ) ] ) ) 05 Y6 5 0 O

BRI N0NNENOIEEDECYSRE S EeOREENE
EReEEED NP EONONYETUEPNEEURC NN
EDREeEsoIDEsR W EhBYIeEEIuE=SaRN 0N 4
EEOEDED BN NoPene0Ns T REN OSSR EE
— MED 3 0mBluE Do EEEIO D SR« B
ol peRLuEs Dl PhERRDELE B OO
O [CosDoE BREpo U RERC 2 ReSroYP U
BIEEB B 0E0].8/0 031 DD LONOSEAEO0|SIFOOD I
(RO 0 PoRCERoREE e RPN
NREE00E 90850 B8900I«CSEawE OMp
eRDeNEDeu> SI9NEE0$NDUS K0 RVONEPO 8
e 13 DD 5[50 DD BOE MO [0/kN0 MmN

o] 0@ n0BEeDOK 00600 CoNEF

2D YD ]OUSHO08 20 RB00 B LW

DD D /HaHsONEPORCs & ERNBYBN0 1

1090 Te/9D]E L) 8D @1 QB@IO[O[UY oW

IDI®9/8]o/® IBIBe]8)Bl CIBID/C[c [OB/0[0/ 00 ™ mE W
el SIDI0]3C/0 191D [0 [BI3] [0S IED B[R AEOFED [TI0[=]m
WD a/®> B [Do/e]e]0 IODMTOS SO CLION=D @
BT e [9END 9 D9BaINe YO LR E LB EF
mEE7o800e0sED0A0E Y MRII ISEACPEDP |~
0E/aepHHDN0L DK DESBLITE TR I B
D@0 DDMOBDER N SRt e e el ]
B/H7)5 0 [®/e]0/2]0 @ @0 BI0[0<k 00RO QREDIOR A
NP SDeNR L B[00 PIAo0DEE RGO DEs
35 0N3/e/B0IN 0B 0 M0 8R JOP N~ mF
eyBLs]® DD ARB B D00NOLE: 0GP [ClC/eRm
W/ ABEDIDP D0 QD EPR0LCRP QD oM/~
B 0Wel0/#] 03D /8»c]a9DD 9 ORDOEO MBI @ DML ¥
¢ BaE@BODH 900D € QNE HAS OB M0 SOk [u/a™
0 WOB3 0P @DSB0ADE0ED N0 NOCOwnk

43

vd

19AeT

32

Neuron

AP ETO> B XS B QKO FREIDOHOLF MM |

2O BIBN®D D 02D 0)H)BO)C]D S DE@D0EIO0@ NG |«

{1 EDSR0N3 09w 00 dN0GD/ESCTOFOCCDIONONe ¥ E

ol C/N® B30I a5 008060 @RIODSETCN0 LD awh
¢ 8¢ 9 ¢¢ 0¢ 8T 9T ¢TI (<TI0 3 9 14 /4 0



Weight ID

34459

42178

4140

17131

Picbreeder Apple

Unified Factored Representation

Controls Stem Angle

)

.
Controls Apple Size

0000w

- e
Cleans Background

00000

Removes Stem

EEEE

L _
Aw=-1 Aw =20 Aw = +1

Sweeping Weight Value

_

Weight ID
135 37753

37721

37809

SGD Apple

Fractured Entangled Representation

0000e

N
=~ Controls Apple Size

00066

L

~ (Cleans Background

Sweeping Weight Value
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How does this Apply to LLMs?
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FER In LLMs

Evidence in GPT-3

Example 1:

Me: I have 3 pencils, 2 pens, and 4 erasers. How many things do I
have?

GPT-3: You have 9 things. [always correct]
Example 2:

Me: I have 3 chickens, 2 ducks, and 4 geese. How many things do I
have?

GPT-3: You have 10 animals total. [always incorrect]
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GSM-Symbolic: Understanding the Limitations of
Mathematical Reasoning in Large Language Models

Iman Mirzadeh” Keivan Alizadeh Hooman Shahrokhi*
Oncel Tuzel Samy Bengio Mehrdad Farajtabar'

Apple

Abstract

Recent advancements in Large Language Models (LLMs) have sparked interest in their formal
reasoning capabilities, particularly in mathematics. The GSM8K benchmark is widely used
to assess the mathematical reasoning of models on grade-school-level questions. While the
performance of LLMs on GSMS8K has significantly improved in recent years, it remains unclear
whether their mathematical reasoning capabilities have genuinely advanced, raising questions
about the reliability of the reported metrics. To address these concerns, we conduct a large-
scale study on several state-of-the-art open and closed models. To overcome the limitations of
existing evaluations, we introduce GSM-Symbolic, an improved benchmark created from symbolic
templates that allow for the generation of a diverse set of questions. GSM-Symbolic enables
more controllable evaluations, providing key insights and more reliable metrics for measuring the
reasoning capabilities of models.Our findings reveal that LLMs exhibit noticeable variance when
responding to different instantiations of the same question. Specifically, the performance of all
models declines when only the numerical values in the question are altered in the GSM-Symbolic
benchmark. Furthermore, we investigate the fragility of mathematical reasoning in these models
and demonstrate that their performance significantly deteriorates as the number of clauses in
a question increases. We hypothesize that this decline is due to the fact that current LLMs
are not capable of genuine logical reasoning; instead, they attempt to replicate the reasoning
steps observed in their training data. When we add a single clause that appears relevant to the
question, we observe significant performance drops (up to 65%) across all state-of-the-art models,
even though the added clause does not contribute to the reasoning chain needed to reach the
final answer. Overall, our work provides a more nuanced understanding of LLMs’ capabilities
and limitations in mathematical reasoning.
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Reasoning or Reciting? Exploring the Capabilities and Limitations of

Zhaofeng Wu®
Bailin Wang®

GPT-4
Performance

Default
/;_)
Counterfactual

A D

Spatial
B
i

Coordinates of

(-1,0)

Figure 1: GPT-4’s performance on the default version of various tasks (blue) and counterfactual counterparts
(orange). The shown results use 0-shot chain-of-thought prompting (§4; Kojima et al.. 2023). GPT-4 consistently
and substantially underperforms on counterfactual variants compared to default task instantiations.

Arithmetic

random ;

0 100

27462

in base-10

89

in base-9

100

Drawing

Draw a bubble tea

rotated 180°

Linlu Qiu®
Najoung Kim“
®MIT “Boston University

Alexis Ross®

zfw@csail.mit.edu

Code Exec.

sortedg
“abl - “ » -
) key=lambda x: x[1],

in Python
[“ba” : “ab”]
w/ 1-based indexing

[:((ab”, ((ba”]

Chord Fingering

Play C major triad

on a guitar

with A string tuned
toaCandDtoanF

Code Gen.
——
.

Sort list by the
second element

in Python
sorted(

list,

key=lambda x: x[1],
)

w/ 1-based indexing

sorted(
list,
key=lambda x: x[2],

Note in Melody
HE.
E—

The 4th note of
Twinkle Twinkle

in C major

Ekin Akyiirek®
Jacob Andreas®

Language Models Through Counterfactual Tasks

Basic Syntax

Find the main
subject and verb

“They think LMs are
the best” in
subj-verb-obj order

(they, think)

“Think are the best
LMs they." in
verb-obj-subj order

(they, think)

Chess
.
4

Is the move legal?

Boyuan Chen®
Yoon Kim®

Logic
I
I —

IfXareV,YareZ.
Are X Z?

= corgis
= mammals
= animals

N < X

Yes

= corgis
= reptiles
= plants

N < X

SET Game
I
—

¢
L)
(11}

Rule: Either identi-
cal or all different in
color, number,
shape, & shading

Yes

Rule (additional):
Except, for number, 2
cards should be the
same while 1 differs

No
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On the Biology of a Large Language Model

We investigate the internal mechanisms used by Claude 3.5 Haiku — Anthropic's lightweight
production model — in a variety of contexts, using our circuit tracing methodology.

calc: 36+59= 95

(

I ’ ’ ‘ ‘ ‘ | | ‘ ‘ Sum Features

The model has finally computed information
about the sum: its value mod 10, mod 100,
and its approximate magnitude.

Hover to see

feature
visualizations! |

-

ARITHMETIC WITHOUT ALGORITHMS: LANGUAGE
MODELS SOLVE MATH WITH A BAG OF HEURISTICS

Yaniv Nikankin'* Anja Reusch! Aaron Mueller’'? Yonatan Belinkov'
I Technion — Israel Institute of Technology %Northeastern University

J J 1 | | l | ' approximate magnitude. Operand plots show
- ; 1 ! ’ l l vertical or horizontal stripes.
- |l\| 1]
add ~57 add _9
Inputs near 30 make this L j ]
early feature fire Y )
[ |
: A
" [ ] [ [ ] [ Input Features
: g_hg mo(cjiel hﬂs featurejs specific to'thg ones
N T iy ) O o) e e
X A 10 1. A )
] Most computation
calc: 36 + 590 = takes place on the

“=" token
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Test Loss

Scaling helps... but In what way?

Scaling Laws for Neural Language Models

L =(Cnin/2.3+108)70:050

2 ' . T r
10~ 1077 10> 10=% 107! 10!

Compute
PF-days, non-embedding

4.2

3.9

3.6

3.31

3.0

2.7

—— L=(D/5.4-10%3)70-09

,.1.(.)8 —_— 109

Dataset Size

tokens

Kaplan et al. (2020)

5.6
4.8

4.0

3.2

2.4

— L =(N/8.8 1013)—0.076

105 107 109
Parameters
non-embedding
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Platonic Representation

The Platonic Representation Hypothesis

Neural networks, trained with different objectives
on different data and modalities, are converging to a
shared statistical model of reality in their representa-
tion spaces.

A red sphere next to
a blue cone.

| frext
|

Hypothesis
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PP P oK
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Scaling helps... but In what way?
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Scaling helps... but In what way?

Statistical: Scaling laws are statistical observations
* How does it relate to regularities?

Efficiency: we don’t have infinite data

 [s 10T tokens enough?

Practicality: Why do our LLMs still have “jagged intelligence”?
e Can get IMO gold, but can’t reliably book a hotel!

Deep learning is a data—-driven learning paradigm
Does there exist a more efficient regularity-driven learning paradigm?
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What could be better?

* Complexification (ex: morphogenesis, etc.)
* Builds regularities on top of other reqgularities (bottom up)
* Emergence
e Adaptability
* Pressures the learned regularities to be robust to environmental changes
* Representation must capture axes of variation which "carve nature at its joints”
e Serendipity (order matters for learning!)
* Much higher chance of finding a useful learning curriculum
* What learning paradigm captures all of these? Open-Endedness!

Function Space ;
Solution Space

of Skull i
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Is this a Platonic Intelligence?

Space of Forms Real World Intelligent Agents

Unified Factored
Representation
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