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Towards a Platonic Intelligence with 
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The World is not Random
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The World has Structure

Space of Forms

Plato

Real World
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Intelligent Agents must capture this Structure

• To solve goals, intelligent agents must 
understand the world 

• Their internal representation must 
capture the structure of the world
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Capturing Structure with AI

• AI systems face the same problem: how do 
we capture regularities of the world? 

• We try to bake in some symmetries 
through architecture design 

• Inductive bias

Attention 
Architecture

Convolutional 
Architecture

Translation 
Equivariance

Permutation 
Equivariance
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Capturing Structure with AI

• What about everything else? 

• Example: lighting invariance 

• How do you capture lighting invariance? 

• We don’t know 

• Solution: train on lots of data with SGD

Architecture Lighting 
Invariance
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Does this Work?



Hypothesis: Fractured Entangled Representations

• Conventional SGD training finds 
neural representations which are 
fractured and entangled  

• Doesn’t capture the underlying 
regularities of the world 

• Position: Open-Ended Search 
may be the solution to learn 
unified and factored neural 
representations 

• Internal representation affects 
generalization, creativity, and 
continual learning
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Compositional Pattern Producing Network 
(CPPN)

• Toy domain to study neural representations: implicitly represent an image 

• Inspired by biological developmental process 

• Easy to visualize how output behavior is internally represented, neuron by neuron
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CPPNs are an Analogy

• CPPNs are a useful visual analogy to think about LLMs 

• CPPN’s output image  LLM’s output behavior 

• CPPN’s internal visualization  LLM’s internal representation 

• Visualize how behaviors are actually constructed holistically 

• Two CPPNs may have same output, but inner encodings could be qualitatively different 

• Two LLMs may have same behavior, but their inner representation might be 
qualitatively different

⟺

⟺
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• Online website for humans to breed images to 
their desire 

• Evolve the underlying CPPNs 

• No end goal, do whatever you want! 

• *NEAT based CPPNs

Picbreeder!
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What Do You Expect to Find?
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What People Actually Found! 
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• Many insights on the nature of search 

• Deception 

• Serendipity 

• Open-Endedness 

• Case studies: 

• Natural Evolution 

• Scientific Innovation 

Why Greatness Cannot be Planned
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Picbreeder has Intriguing Properties
Open-Ended
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Picbreeder has Intriguing Properties
Open-Ended



• When a trait evolved for one function but gets repurposed for another function

Serendipitous Exaptation
Picbreeder has Intriguing Properties
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Serendipitous Exaptation
Picbreeder has Intriguing Properties
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• Natural evolution has developed adaptable genotypes: 
• Canalization 
• Regularity 
• Modularity 
• Symmetry 

• Certain axes of variation become more likely while 
others become impossible

Emergence of Evolvability
Picbreeder has Intriguing Properties
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Emergence of Evolvability
Picbreeder has Intriguing Properties
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Great, Let’s Look Into an Image
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Learning the Picbreeder Skull with SGD

Picbreeder Skull SGD SkullSGD Training

• Let’s train a conventional network to recreate the skull 

• Perfect reconstruction!

 

 

 

 

[(x, y, d) → (h, s, v)]
[(x, y, d) → (h, s, v)]

…

[(x, y, d) → (h, s, v)]
[(x, y, d) → (h, s, v)]
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Layerization

• Convert everything to a universal architecture space: MLP 

• Existence proof of Picbreeder solution MLP weight space
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Layerization

• Convert everything to a universal architecture space: MLP 

• Existence proof of Picbreeder solution MLP weight space
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Unified Factored Representation
s vh

x y d 1

Picbreeder Skull
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Fractured Entangled Representation
s vh

x y d 1

SGD Skull
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Unified Factored Representation

Picbreeder Skull
Fractured Entangled Representation

SGD Skull
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s vh
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Unified Factored Representation
Picbreeder Butterfly
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s vh
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Fractured Entangled Representation
SGD Butterfly
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Unified Factored Representation

Picbreeder Butterfly
Fractured Entangled Representation

SGD Butterfly
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Unified Factored Representation
Picbreeder Apple

x y d 1

s vh



32

Fractured Entangled Representation
SGD Apple

x y d 1

s vh
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Unified Factored Representation

Picbreeder Apple
Fractured Entangled Representation

SGD Apple



How does this Apply to LLMs?
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FER In LLMs
Evidence in GPT-3

Example 1: 

Me: I have 3 pencils, 2 pens, and 4 erasers.  How many things do I 
have? 

GPT-3: You have 9 things. [always correct] 

Example 2: 

Me: I have 3 chickens, 2 ducks, and 4 geese.  How many things do I 
have?  

GPT-3: You have 10 animals total. [always incorrect]
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Scaling helps… but in what way?

Kaplan et al. (2020)
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Scaling Laws for Neural Language Models



Scaling helps… but in what way?
Platonic Representation Hypothesis
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Huh et al. (2020)



• Statistical: Scaling laws are statistical observations 

• How does it relate to regularities? 

• Efficiency: we don’t have infinite data 

• Is 10T tokens enough? 

• Practicality: Why do our LLMs still have “jagged intelligence”? 

• Can get IMO gold, but can’t reliably book a hotel! 

• Deep learning is a data-driven learning paradigm 

• Does there exist a more efficient regularity-driven learning paradigm?

Scaling helps… but in what way?
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Function Space
Solution Space 

of Skull

Conventional 
SGD

Open-Ended 
Search

UFRFER

What could be better?
• Complexification (ex: morphogenesis, etc.) 

• Builds regularities on top of other regularities (bottom up) 
• Emergence 

• Adaptability 
• Pressures the learned regularities to be robust to environmental changes 
• Representation must capture axes of variation which "carve nature at its joints” 

• Serendipity (order matters for learning!) 
• Much higher chance of finding a useful learning curriculum 

• What learning paradigm captures all of these? Open-Endedness!
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Is this a Platonic Intelligence?

Space of Forms Real World

Unified Factored 
Representation

Intelligent Agents
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Is this a Platonic Intelligence?

Fractured Entangled 
Representation

Unified Factored 
Representation

Aspirational Ideal Instantiation



45

Collaborators

Jeff Clune
UBC 

Vector Institute

Joel Lehman
University of Oxford

Kenneth Stanley
Lila Sciences 



46

Thank You!


