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Who has the same math that we do?

Platonic:  Everybody, by definition.  We can only find out how much
                they know if we share communication capabilities.

Experiential:  Systems with which we share experiential capabilities.
                Communication follows from shared experience.

We’re changing the perspective, not the facts. 



  

Where we’re going …

● What is the experienced world?

● Experience        categories

● Categories        math as we know it
Example: prime numbers
Example: qubit spaces
Example: computation

● Proofs

● Why is this so hard?

● What do we learn from this perspective?



  

Two “pictures” of experience

(Rest of)
Physical world

Experience

                            Observer                 Environment

Physical world

Experienced world  = boundary



  

What kinds of experiences are needed for math?



  

Claim:  

The experience of identity over time is the key
to mathematics.

     “Don’t take it for granted, abstract it!”



  

The world contains objects. There is a class O of “objects”.

If nothing happens to them, 
objects persist through time.

For each object A in O, there is 
an “identity” map id

A
: A → A.

Let’s start by building some basic math

Experiences                                      Axioms

Note that `→’ indicates the passage of “time”.



  

Objects can undergo processes of 
change

For A, B in O, there is a set (maybe Ø) 
of “morphisms” f: A → B

All but the simplest processes of 
change have intermediate states

If f: A → B and g: B → C, there is a 
map gf: A → C

Only the order of the intermediates 
matters

If f: A → B and g: B → C and h: C → 
D, h(gf) = (hg)f

Experiences                                      Axioms

Now for processes ...



  Adámek, J., Herrlich, H. and Strecker, G. E. Abstract and Concrete Categories: The Joy of Cats, 2004, p. 21.



  

Some other correspondences ...

There is usually more than one way 
to get something done

All interesting categories have 
commutative diagrams

Sometimes actions can be reversed, 
and when they can be, things are 
easier

Some morphisms have adjoints, and 
these make things easier

The order in which things are done 
often matters

Morphisms that commute, e.g. fg = 
gf, are special cases

Life experiences                                Category theory



  

“Everything else is a special case ...”

Sets, groups, rings, fields, vector spaces, topological spaces, etc
are specifications of properties of objects and morphisms.

They all exemplify the basic intuitions that define categories:

Objects have identities
Processes compose
Order matters

What they add are “elements” in objects and various “operations” 
      on these elements.



  

Category theory             Math as we know it

Key intuition: Composition is the fundamental binary operation. 

Suppose we have:

                                     f            f             f            f ...
                             X           X            X            X

so we have, e.g. f, ff, fff, ffff, …

This looks like concatenation, or addition.

So we could think of “1” as “do f once” etc.  Numbers are actions.

 

...



  

Doing 1:   1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18 …
Doing 2:       2      4      6      8      10        12        14        16        18 …
Doing 3:           3                      9                                15                   ...  
Doing 4:                                 nothing new
Doing 5:                   5                                         nothing new till 25
Doing 6:                                 nothing new
Doing 7:                           7                                 nothing new till 49
                 1  2  3     5      7                 11        13                   17

Prime numbers just need concatenation, i.e. composition.  

So they are implicit in morphism composition and associativity – 
     the idea of putting parenthesis (boundaries) around things.

Example: prime numbers



  

Example: qubit spaces

A qubit (quantum bit) is a physical system that, when measured
with respect to a reference direction z, can be in one of two states,
conventionally called |↑> or |↓>, or |+1> or |-1>.

An n-qubit space is a normalized real vector space where the
vectors are n-tuples (φ

1
 … φ

n
), 0 ≤ φ

i
 ≤ 2π.  We are typically

interested in qubits parameterized by “time” t, so the vectors 
are (exp(-(i/ħ)φ

1
t) … exp(-(i/ħ)φ

n
t)).  These are “quantum states”.

Quantum theory is the theory of t-symmetric (unitary) linear maps
from a qubit space to itself.  These maps represent time evolutions.



  

Math can be misleading

Qubits are often represented by Bloch spheres
in (x,y,z) Euclidean 3-space.  

Where did these spatial coordinates come from?

Why two angles, θ and φ, instead of just one?

The x, y, and z directions in the Bloch sphere are
the three orthogonal ways that we, in our labs, can choose the
reference direction “z” in the definition of a qubit. 

The Bloch sphere represents our measurement capabilities
(reference frames) in the special case of 3d spatial orientation.



  

Example: Computing

A physically-implemented computation is a commutative diagram. 

Adapted from
Horsman et al.
RSA 2014



  

Math can make assumptions explicit

When we make measurement and interpretation explicit, we see:

1. Interpreting something as computing requires computing a function.

        ●  We haven’t defined “computation”.
        ●  We can’t interpret a process as “computing” something 
                  non-computable by us.

2. Many interpretations are possible          polycomputing, VMs.

3. Computations is relative to environmental constraints – the
         environment shapes the free-energy landscape.



  

Proofs (What is logic?)

(A, (A       B))         B

      Entities have “causal power” as well as identity. 
              This causal power is context-independent.

¬(¬A)       A

      We are effectively assuming that everything is decidable.

Ǝ, Ǝ!,   = ¬Ǝ¬

      Membership in classes is decidable.

Context-independence and decidability are big assumptions!

A



  

Where did these assumptions come from?

Newton limited non-locality to gravity.

Einstein forbade non-locality altogether.

Post-Einstein, classical physics assumed local, context-free events
      observed by effectively omniscient (real numbers), effectively 
      omnipotent (isolated systems) observers.

1st-order logic and Hilbert’s program embody these assumptions.
  
Gödel’s theorem (“truth” involves hidden assumptions), non-
computability (set membership often isn’t decidable), and the 
Frame Problem (context matters) now look inevitable!  



  

1850                                                                                                                                                         1930  

1940                                                                                                                                                          2020  

dS = dQ/T
 Clausius

S = ln kBΩ
Boltzmann

Planck’s
constant

Church-
 Turing
  thesis

Gödel’s
  proof

Bohr-Einstein
     debate

Wittgenstein’s
   Tractatus

   Ashby’s
Cybernetics, 
   Moore’s 
  Theorem

Landauer’s         Bell’s
  Principle        Theorem

Wheeler

   Deutsch
Quantum TM

   Aspect
experiment

Pearl’s
  MB 

  ‘t Hooft
Holography

Friston
  FEP,
 Fuchs
QBism

       Shannon’s
  Communication



  

Why is math hard?  Why is it nonetheless natural?

Classical physics notwithstanding, the world is not transparent.

GOFAI notwithstanding, 1st-order logic from fixed axioms is not
a good description of how our minds work.

But math is mainly about analogies, and we are good analogy
machines.

Analogy is what our motor-planning systems do.  Analogy is how
we can achieve the same goal by multiple paths.



  

We experience the actions of a
high-dimensional environment
on a low-dimensional boundary.

Paths in the environment map
many-to-one to paths on the
boundary.  We only observe paths
on the boundary.

Computers are useful precisely because they have lots of internal
states!  We don’t have to watch everything they do.

Example: History dependence (geometric phase)

                            Observer                 Environment



  

Example: Functors

Joy of Cats, p. 29-30

Functors are structure mappings – D. Gentner’s term – i.e. well-formed
analogies between mathematical systems.  Like analogies in general,
they can preserve more or less structural information when connecting
two domains.  Are all analogies functors?  Are all domains formalizable?



  

Semantic maps are functors

A well-defined semantics is a useful analogy.

cf. J. Goguen’s
 “Categorical
  Manifesto”
 MSCS, 1991



  

What are we doing when we’re doing math?

Constructing well-defined analogies.

Exploring the space of possible semantics/interpretations

“Playing with language” to find a useful description

All in the service of understanding/modeling observations
          of processes unfolding in time, i.e. of active inference.



  

                            Observer                 Environment

The “unreasonable effectiveness of mathematics”

Our environment is basically the same kind of entity that we are.

Our processes are analogs of its processes, because both are
instances of active inference acting on the same boundary data.



  

         Who has the same math that we do?

Our environment has the same kind of math!

Any system we can observe has the same kind of math.

Mutual observation/interaction is communication.

The “Platonic realm” is the world, including us.



  

Thank you

 Questions?
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