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Why Mathematicians Re-Prove What They Already Know
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The Barrier of Meaning

"When you perceive intelligently, as you sometimes do, you always perceive a 
function, never an object in the set-theoretic or physical sense.” 



“Logic formalizes only very few of the processes 
by which we think. The time has come to enrich formal 
logic by adding some other fundamental notions to it. What is it 
that you see when you see? You see an object as a key, you see a 
man in a car as a passenger, you see some sheets of paper as a 
book. It is the word 'as' that must be 
mathematically formalized, on a par with the 
connectives 'and,' 'or,' 'implies,' and 'not' that 
have already been accepted into a formal logic. 
Until you do that, you will not get very far with your A.I. 
problem." 

The Barrier of Meaning
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MY TAKE AWAY?

Meaning is about imagination. 

It is about seeing what is as what could be



Thom Scott Phillips

“as” relation
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Ostension + Inference
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Physical Form (e.g., iconicity)

Physical Context (e.g., deixis)

Joint Activity 

Shared History 

Linguistic Code 
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Fig. 1. Sample task from the ARC evaluation dataset.

a rule consistent with the demonstrations is “Extract the sub-
grid enclosed by either a light-blue, dark-blue, or yellow hollow
rectangle”; another such rule is “Extract the sub-grid enclosed
by the hollow rectangle that encloses the highest number
of pink cells.” When applied to the test grid, the former
rule will produce an “incorrect” answer—that is, incorrect
with respect to the intentions of the human task designer.
The latter rule will produce the intended “correct” answer,
but only because of an unintended correlation in the task—
it is right for the wrong reason, at least according to the
intention of the task designer. As we describe in subsequent
sections, humans are not likely to base their answers on such
unintended correlations: the intended concepts tend to be
highly salient for humans, and humans are likely to use an
“Occam’s Razor” heuristic, namely that simpler explanations
are more likely to be correct (and generalizable). This heuristic
also relies on implicit pragmatic assumptions, for both the
human task designers and human task solvers, about what
the demonstrations are intended to communicate (30); see the
Discussion for more on this point. However, unlike humans,
large neural-network models are prone to discovering spurious
patterns (“shortcuts”) in data and using these patterns to
arrive at correct answers, resulting in limited generalization
beyond the training distribution. (31, 32).

Of the 1,000 ARC tasks he created, Chollet (33) released
400 relatively easy tasks as a “training set,” 400 harder tasks
as an “evaluation set,” and kept the remaining harder puzzles
to form private test sets. Contestants in the 2024 ARC-AGI
Prize competition submitted programs to vie for monetary
prizes, including a $600,000 grand prize for a program that
exceeds 85% accuracy—that is, percentage of correct output
grids—on a private test set of 100 tasks†. The top scoring
program, which employed an LLM that had been fine-tuned
on public ARC tasks, and used extensive data augmentation,
reached about 54% accuracy (35).

After the competition, Chollet and colleagues tested a
pre-release version of OpenAI’s o3 “reasoning” model on a
di�erent “semi-private” test set of 100 tasks, designed to
evaluate proprietary AI models without having to share the
o�cial competition test set. o3 achieved 76% accuracy using a
“low-e�ort” setting and 88% accuracy on a “high-e�ort” setting,
with computing cost per task estimated at $200 and $20,000
respectively (36).‡ Chollet described o3’s superior performance
as “a genuine breakthrough, marking a qualitative shift in AI
capabilities compared to the prior limitations of LLMs”(15).

†Average human performance was measured on the somewhat easier public evaluation set as 64%
(34).

‡The o3 model was not qualified to compete in the official competition because it could not be run
locally on the competition server and its processing required substantially more than the maximum
time limit.

Despite their high accuracy, to what extent are o3 and
similar AI systems performing human-like abstract reasoning
on ARC tasks? In the next sections we address this question.
First we articulate several principles that should be taken
into account when evaluating cognitive capacities in AI
systems. Next we describe the dataset and experimental
methodology we adopted to apply these principles when
evaluating abstraction and analogy-making abilities in three
state-of-the-art AI systems: o3, Claude Sonnet 4 and Gemini
Pro 2.5, as well as in humans. We then discuss the results of
our experiments, which indicate that the AI models we tested
are substantially more prone to using unintended shortcuts
than are humans in solving abstract reasoning tasks. Finally,
we describe some of the key features of human-like abstraction
in ARC—currently missing from AI systems—and suggest
promising directions for future work. In short: Develop a
rigorous science of evaluation and take seriously Ulam’s charge
to formalize the “as relation” (1).

Evaluating Cognitive Capacities of AI Systems

Issues in Evaluation. Many studies have evaluated AI systems
for cognitive capabilities, such as reasoning, abstraction, and
analogy-making (37–39). The typical methodology is either
(1) develop a benchmark dataset meant to test this ability or
(2) adapt a test that was developed for assessing such abilities
in humans. The study then reports the accuracy of particular
AI systems on the benchmark or test as evidence for or against
the AI system having this general capability.

This methodology is problematic for many reasons. First,
there is the problem of data contamination. For the most ca-
pable models—e.g., those developed by large tech companies—
the training sets are not made public, so we don’t know if the
benchmark being used to evaluate the system, or something
quite similar, has been included in the training data—an all-
too-common issue (40, 41). Second, there is the problem of
robustness and generality. It is often assumed that because
a system has high accuracy on one set of test items, it will
perform well on new test items that assess the same abilities
but have di�erent wording or other variations. However, many
studies have shown that this assumption often does not hold
for AI systems (19, 42–44). Third is the related problem of
“construct validity”: the assumption that a particular set of test
items will capture a general capability. This is particularly
a problem when using tests designed for humans to assess
AI models; assumptions made about construct validity for
humans often do not hold in the AI case (45).

Evaluation Principles From Cognitive Science. Cognitive sci-
entists have long encountered similar issues in testing for

Mitchell et al. PNAS — October 24, 2025 — vol. XXX — no. XX — 3

Mitchell, Foster, Beger, Yi, Fu, Denton, Palmarini, R&R at PNAS
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Fig. 1. Sample task from the ARC evaluation dataset.

a rule consistent with the demonstrations is “Extract the sub-
grid enclosed by either a light-blue, dark-blue, or yellow hollow
rectangle”; another such rule is “Extract the sub-grid enclosed
by the hollow rectangle that encloses the highest number
of pink cells.” When applied to the test grid, the former
rule will produce an “incorrect” answer—that is, incorrect
with respect to the intentions of the human task designer.
The latter rule will produce the intended “correct” answer,
but only because of an unintended correlation in the task—
it is right for the wrong reason, at least according to the
intention of the task designer. As we describe in subsequent
sections, humans are not likely to base their answers on such
unintended correlations: the intended concepts tend to be
highly salient for humans, and humans are likely to use an
“Occam’s Razor” heuristic, namely that simpler explanations
are more likely to be correct (and generalizable). This heuristic
also relies on implicit pragmatic assumptions, for both the
human task designers and human task solvers, about what
the demonstrations are intended to communicate (30); see the
Discussion for more on this point. However, unlike humans,
large neural-network models are prone to discovering spurious
patterns (“shortcuts”) in data and using these patterns to
arrive at correct answers, resulting in limited generalization
beyond the training distribution. (31, 32).

Of the 1,000 ARC tasks he created, Chollet (33) released
400 relatively easy tasks as a “training set,” 400 harder tasks
as an “evaluation set,” and kept the remaining harder puzzles
to form private test sets. Contestants in the 2024 ARC-AGI
Prize competition submitted programs to vie for monetary
prizes, including a $600,000 grand prize for a program that
exceeds 85% accuracy—that is, percentage of correct output
grids—on a private test set of 100 tasks†. The top scoring
program, which employed an LLM that had been fine-tuned
on public ARC tasks, and used extensive data augmentation,
reached about 54% accuracy (35).

After the competition, Chollet and colleagues tested a
pre-release version of OpenAI’s o3 “reasoning” model on a
di�erent “semi-private” test set of 100 tasks, designed to
evaluate proprietary AI models without having to share the
o�cial competition test set. o3 achieved 76% accuracy using a
“low-e�ort” setting and 88% accuracy on a “high-e�ort” setting,
with computing cost per task estimated at $200 and $20,000
respectively (36).‡ Chollet described o3’s superior performance
as “a genuine breakthrough, marking a qualitative shift in AI
capabilities compared to the prior limitations of LLMs”(15).

†Average human performance was measured on the somewhat easier public evaluation set as 64%
(34).

‡The o3 model was not qualified to compete in the official competition because it could not be run
locally on the competition server and its processing required substantially more than the maximum
time limit.

Despite their high accuracy, to what extent are o3 and
similar AI systems performing human-like abstract reasoning
on ARC tasks? In the next sections we address this question.
First we articulate several principles that should be taken
into account when evaluating cognitive capacities in AI
systems. Next we describe the dataset and experimental
methodology we adopted to apply these principles when
evaluating abstraction and analogy-making abilities in three
state-of-the-art AI systems: o3, Claude Sonnet 4 and Gemini
Pro 2.5, as well as in humans. We then discuss the results of
our experiments, which indicate that the AI models we tested
are substantially more prone to using unintended shortcuts
than are humans in solving abstract reasoning tasks. Finally,
we describe some of the key features of human-like abstraction
in ARC—currently missing from AI systems—and suggest
promising directions for future work. In short: Develop a
rigorous science of evaluation and take seriously Ulam’s charge
to formalize the “as relation” (1).

Evaluating Cognitive Capacities of AI Systems

Issues in Evaluation. Many studies have evaluated AI systems
for cognitive capabilities, such as reasoning, abstraction, and
analogy-making (37–39). The typical methodology is either
(1) develop a benchmark dataset meant to test this ability or
(2) adapt a test that was developed for assessing such abilities
in humans. The study then reports the accuracy of particular
AI systems on the benchmark or test as evidence for or against
the AI system having this general capability.

This methodology is problematic for many reasons. First,
there is the problem of data contamination. For the most ca-
pable models—e.g., those developed by large tech companies—
the training sets are not made public, so we don’t know if the
benchmark being used to evaluate the system, or something
quite similar, has been included in the training data—an all-
too-common issue (40, 41). Second, there is the problem of
robustness and generality. It is often assumed that because
a system has high accuracy on one set of test items, it will
perform well on new test items that assess the same abilities
but have di�erent wording or other variations. However, many
studies have shown that this assumption often does not hold
for AI systems (19, 42–44). Third is the related problem of
“construct validity”: the assumption that a particular set of test
items will capture a general capability. This is particularly
a problem when using tests designed for humans to assess
AI models; assumptions made about construct validity for
humans often do not hold in the AI case (45).

Evaluation Principles From Cognitive Science. Cognitive sci-
entists have long encountered similar issues in testing for
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Abstract

It has become increasingly challenging to under-
stand and evaluate LLM capabilities as these mod-
els exhibit a broader range of behaviors. In this
position paper, we argue that LLM researchers
should draw on the lessons from another field
which has developed a rich set of experimental
paradigms and design practices for probing the
behavior of complex intelligent systems: animal
cognition. We present five core principles of eval-
uation drawn from animal cognition research, and
explain how they provide invaluable guidance
for understanding LLM capabilities and behav-
ior. We ground these principles in an empirical
case study, and show how they can already pro-
vide a richer picture of one particular reasoning
capability: transitive inference.

1. Introduction

In the early 20th century, a horse named Clever Hans gained
international fame for his ability to solve arithmetic calcu-
lations—including addition, division, fractions, and telling
time—and even “talk” by tapping his hoof on a grid of num-
bers and letters. Hans could complete a wide variety of
tasks with a high degree of accuracy, and toured throughout
Germany performing as “the first talking animal.” However,
an empirical investigation by comparative psychologists
revealed that Hans was not performing calculations at all.
Instead, he was unconsciously responding to subtle, invol-

*Equal contribution,+Equal advising/senior authors listed al-
phabetically. 1Department of Computer Science, Princeton Uni-
versity 2Department of Psychology, University of California Los
Angeles 3Department of Computer Science and Engineering, New
York University Tandon 4Department of Psychology, Yale Uni-
versity 5MRC Cognition and Brain Sciences Unit, University of
Cambridge 6Cognitive Science Program and Program in Animal
Behavior, Indiana University Bloomington 7Department of Infor-
matics and Cognitive Science Program, Indiana University Bloom-
ington 8Santa Fe Institute. Correspondence to: Sunayana Rane
<srane@princeton.edu>.

Proceedings of the 42nd
International Conference on Machine

Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

untary cues from his owner—such as micro-movements and
facial expressions—that guided him to the correct answer.
Interestingly, Hans’ owner was unaware of these uninten-
tional signals, genuinely believing that the horse was acting
independently (for a review, see Samhita & Gross, 2013).
This phenomenon, now known as the “Clever Hans Effect,”
remains a cautionary tale in the study of intelligence and
communication, and emphasizes the importance of care-
ful and rigorous experimental design when investigating
behavior for hallmarks of intelligence.

This historic case study raises critical questions in the mod-
ern age of artificial intelligence: How and when can we be
sure that large language models (LLMs) exhibit the cog-
nitive capacities of humans and other evolved organisms?
As LLMs have become larger and more sophisticated, re-
searchers have largely focused on the creation of novel tasks
designed such that high performance can be taken as evi-
dence of an underlying cognitive capacity. This approach
has been used to probe language models for theory of mind
(Kosinski, 2023; Strachan et al., 2024), abstract and analog-
ical reasoning (Chollet, 2019; Webb et al., 2023), planning
(Momennejad et al., 2024), and even “general intelligence”
(Bubeck et al., 2023). While undeniably useful for bench-
marking model performance and improvements over time,
these tasks also raise the possibility that LLMs might “cheat”
and achieve high performance merely through the sheer
scale of their parameter space and training data. Indeed,
there is some indication that LLM performance on many
such tasks is “brittle” and vulnerable to small changes in
problem formulation (McCoy et al., 2023; Lewis & Mitchell,
2024). Further, many existing evaluation tasks produce only
a single numerical performance metric, limiting the infer-
ences that can be drawn about the full extent and limits of a
model’s abilities. In this paper we argue not for the use of
a new task but rather for the adoption of a set of principles

that can guide the creation of new evaluation methods. We

argue that the core principles introduced in this paper,

drawn from methods in animal cognition research, can

help us develop more robust evaluations for LLMs.

1

ICML 2025 (oral)

Baby steps in evaluating the capacities of large language models. [PDF] [DOI] [BibTeX] 
M. C. Frank. (2023). Nature Reviews Psychology. doi:10.1038/s44159-023-00211-x.

How to evaluate the cognitive abilities of LLMs

Anna A. Ivanova (2025) Nature Human Behaviour 
volume 9,  pages 230–233 (2025)

https://psyarxiv.com/uacjm
https://psyarxiv.com/uacjm
https://doi.org/10.1038/s44159-023-00211-x
https://www.nature.com/articles/s41562-024-02096-z#auth-Anna_A_-Ivanova-Aff1
https://www.nature.com/nathumbehav
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Fig. 3. Results of our manual rule evaluations. For each model in each modality (as well as humans), two bars are given, representing the percentage of correct and incorrect
grid outputs over the 480 ConceptARC tasks. Each bar shows the fraction of tasks for which the rule is correct-intended, correct-unintended, and incorrect. The gray areas in
the human-result bars represent rules that we could not classify—see “Evaluation of Rules Generated by AI Models and Humans” above for details. Figure is adapted from (49).

each bar, the green section corresponds to tasks for which
the model’s generated rule was correct-intended; the yellow
section corresponds to correct-unintended rules; and the red
section corresponds to incorrect rules. The left section of the
plot gives these results for the textual modality and the middle
section for the visual modality. The rightmost section gives
the output accuracy and rule-evaluation results for human-
generated rules. The gray areas in the human-result bars
correspond to human-generated solutions for which we were
unable to classify the rule, either because no rule was given
by the participant, no rule was collected by the experimenters
(this was the case for all of the Incorrect tasks), or the rule
given was too unclear to confidently evaluate.

Notably, while o3 in the textual setting exceeds humans
in output-grid accuracy, approximately 28% of its correct
outputs are based on correct-unintended or incorrect rules,
indicating reasoning based on superficial patterns rather than
intended abstract concepts. Models generated several types of
unintended rules, including ones that described complicated
(and spurious) patterns in the demonstrations; rules that
focused on irrelevant features such as (in the textual setting)
the specific numbers encoding grid colors; and rules that
came close to capturing intended abstractions but included
irrelevant spurious associations. Examples of such rules are
given in Figure 4.

In comparison, only 8% of humans’ correct outputs were
based on correct-unintended or incorrect rules. While our
analysis for human-generated rules is limited due to missing
rule data (about 20% of rules for correct outputs were not
classifiable, and rules were not requested for incorrect output
grids), this di�erence is suggestive and will be clarified in
future research.

With respect to the AI models, both Claude and Gemini
have a smaller fraction of correct-unintended rules than o3, but
both are lower than o3 in output accuracy. Also notable is the
percentage of incorrect output grids that are based on correct-
intended rules. In these cases, the models recognized the
intended abstract rule describing the grid transformation, but

were unable to apply it correctly to the test grid. In the textual
setting, this seems to be most common in Claude, and less so
in o3 and Gemini. In the visual setting, however, o3 produced
correct-intended rules in about 27% of cases in which its output
grid was incorrect; Claude and Gemini did so less frequently,
but both still at substantial rates. In summary, reporting
only output-grid accuracy in the textual setting—as was done
in (15)—might overestimate the model’s ability for abstract
reasoning. However, in the visual domain, accuracy alone
might underestimate a model’s abstract reasoning abilities: in
some cases, the models have the competence to induce a correct
rule but lack the performance ability to use the rule to generate
a correct grid. These insights illustrate the importance of going
beyond accuracy, and adopting the principles we outlined in
“Evaluation Principles From Cognitive Science” above.

Discussion

Human-like abstraction. Our findings suggest that LLM models
do not exhibit reliable human-like abstraction on ConceptARC
tasks. A system that can perform human-like abstraction in
the ARC domain must have several additional characteristics.

Core-knowledge primitives. Chollet intended many of the trans-
formation rules to invoke so-called core-knowledge primitives
(21): objectness; goal-directedness; numbers and counting;
and basic geometry and topology (11, 50). While some
psychologists have speculated that such basic concepts are
innate in humans, here we take no position on innateness;
rather, we emphasize the salience of these concepts in human
cognition. The role of such concepts is even more explicit
in ConceptARC than in ARC. When searching for possible
solutions, human solvers are likely to begin with simple rules
informed by these primitives (reflecting a combination of core-
knowledge priors and a parsimony bias). The appearance of
many unintended rules in our experiments strongly suggests
that LLMs have not distilled these primitives—or at least do
not give them suitable weight when searching the space of
possible rules. The degraded performance in the visual setting

Mitchell et al. PNAS — October 24, 2025 — vol. XXX — no. XX — 7

adapted from Beger et al., 2025

Often get it “right” 
for wrong reasons

Mitchell, Foster, Beger, Yi, Fu, Denton, Palmarini, R&R at PNAS
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Fig. 3. Results of our manual rule evaluations. For each model in each modality (as well as humans), two bars are given, representing the percentage of correct and incorrect
grid outputs over the 480 ConceptARC tasks. Each bar shows the fraction of tasks for which the rule is correct-intended, correct-unintended, and incorrect. The gray areas in
the human-result bars represent rules that we could not classify—see “Evaluation of Rules Generated by AI Models and Humans” above for details. Figure is adapted from (49).

each bar, the green section corresponds to tasks for which
the model’s generated rule was correct-intended; the yellow
section corresponds to correct-unintended rules; and the red
section corresponds to incorrect rules. The left section of the
plot gives these results for the textual modality and the middle
section for the visual modality. The rightmost section gives
the output accuracy and rule-evaluation results for human-
generated rules. The gray areas in the human-result bars
correspond to human-generated solutions for which we were
unable to classify the rule, either because no rule was given
by the participant, no rule was collected by the experimenters
(this was the case for all of the Incorrect tasks), or the rule
given was too unclear to confidently evaluate.

Notably, while o3 in the textual setting exceeds humans
in output-grid accuracy, approximately 28% of its correct
outputs are based on correct-unintended or incorrect rules,
indicating reasoning based on superficial patterns rather than
intended abstract concepts. Models generated several types of
unintended rules, including ones that described complicated
(and spurious) patterns in the demonstrations; rules that
focused on irrelevant features such as (in the textual setting)
the specific numbers encoding grid colors; and rules that
came close to capturing intended abstractions but included
irrelevant spurious associations. Examples of such rules are
given in Figure 4.

In comparison, only 8% of humans’ correct outputs were
based on correct-unintended or incorrect rules. While our
analysis for human-generated rules is limited due to missing
rule data (about 20% of rules for correct outputs were not
classifiable, and rules were not requested for incorrect output
grids), this di�erence is suggestive and will be clarified in
future research.

With respect to the AI models, both Claude and Gemini
have a smaller fraction of correct-unintended rules than o3, but
both are lower than o3 in output accuracy. Also notable is the
percentage of incorrect output grids that are based on correct-
intended rules. In these cases, the models recognized the
intended abstract rule describing the grid transformation, but

were unable to apply it correctly to the test grid. In the textual
setting, this seems to be most common in Claude, and less so
in o3 and Gemini. In the visual setting, however, o3 produced
correct-intended rules in about 27% of cases in which its output
grid was incorrect; Claude and Gemini did so less frequently,
but both still at substantial rates. In summary, reporting
only output-grid accuracy in the textual setting—as was done
in (15)—might overestimate the model’s ability for abstract
reasoning. However, in the visual domain, accuracy alone
might underestimate a model’s abstract reasoning abilities: in
some cases, the models have the competence to induce a correct
rule but lack the performance ability to use the rule to generate
a correct grid. These insights illustrate the importance of going
beyond accuracy, and adopting the principles we outlined in
“Evaluation Principles From Cognitive Science” above.

Discussion

Human-like abstraction. Our findings suggest that LLM models
do not exhibit reliable human-like abstraction on ConceptARC
tasks. A system that can perform human-like abstraction in
the ARC domain must have several additional characteristics.

Core-knowledge primitives. Chollet intended many of the trans-
formation rules to invoke so-called core-knowledge primitives
(21): objectness; goal-directedness; numbers and counting;
and basic geometry and topology (11, 50). While some
psychologists have speculated that such basic concepts are
innate in humans, here we take no position on innateness;
rather, we emphasize the salience of these concepts in human
cognition. The role of such concepts is even more explicit
in ConceptARC than in ARC. When searching for possible
solutions, human solvers are likely to begin with simple rules
informed by these primitives (reflecting a combination of core-
knowledge priors and a parsimony bias). The appearance of
many unintended rules in our experiments strongly suggests
that LLMs have not distilled these primitives—or at least do
not give them suitable weight when searching the space of
possible rules. The degraded performance in the visual setting

Mitchell et al. PNAS — October 24, 2025 — vol. XXX — no. XX — 7

adapted from Beger et al., 2025

Very bad at visual

Mitchell, Foster, Beger, Yi, Fu, Denton, Palmarini, R&R at PNAS
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“It is the cognitive function 
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permits the establishment of 
a rigorous analogical 
knowledge.”
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Different kinds of creativity

Margaret Boden• Exploratory

• Combinatorial

• Transformational



Understanding

Imaginal







Culture: 
shared regularity in the 
organization of experience or the 
generation of action  
acquired through social life.

Foster 2018
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Steps to a Probably Approximately Correct
Theory of Culture



Monophysism



Christ Pantocrator, Anon., 6th C  
St. Catherine’s Monastery, Mt. Sinai

Christology



Couliano 1992
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Trinitarian? Y/N
Equal? Y/N

Distinct? Y/N

Trinity Sarcophagus 
c. 350 CE
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Ideal objects



“Systems of ideas that exist 
in their ‘logical dimension.’” 

Ideal objects
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Morphodynamics
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Cultural evolution
needs to go evo-devo 



Diverged > 100 Million Years ago



Ecological demands
plus generative resources

Feigin et al., 2019



Ecological demands
plus generative resources

SMBC-Comics, 2009



Ecological demands
plus generative resources

Foster (2017) in Trajectories
commenting on Emigh et al., How Societies and States Count 
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The data



The data
Thanks to our anonymous informant, HellBlazer
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Evolutionary mechanisms

9 Figures

Figure 1: Theoretical Rate Signatures. Top row shows theoretical rates corresponding with evolutionary
mechanisms, bottom row shows population size and, when appropriate, carrying capacity or exogenous
trends. Theory and rate signatures proposed in 5.2. Column A: Significant extinctions. Death rates
spike, creating space for new lineages in carrying capacity (rising birth rates). Statistical model to identify
significant extinctions and study of Metal bands in Anal. 1. Column B: Competition. Rates converge
and population size plateaus as population approaches cultural carrying capacity (Anal. 2). Column C:
Competition + Key innovation. Key innovations permanently expand the carrying capacity creating
space for new lineages. As in B, but carrying capacity grows according to a logistic growth curve (Anal. 3).
Column D: Exogenous Trend. Rates are a function of some exogenous influence (orange line) outside
normal evolutionary dynamics (Anal. 4).
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Figure 2: Estimated Diversification Rates from Analysis 1. Dashed lines indicate empirical birth
(red) and death (blue) of EM metal bands (first year dropped for clarity). Estimated rates and their 95%
highest posterior density intervals shown in solid colors. Significant rate shifts shown as yellow circles. Five
historical phases visible in estimated rates (partitioned by significant rate shifts) denoted at top of plot.
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No evidence for mass extinction

with RJMCMC (minimal assumptions)



rejecting a crude economic story

Figure 4: Estimated Diversification Rates from Analysis 4. Estimated diversification rates (B)
when rates are a function of the proportion of broadly-understood ”Metal” bands (i.e., labeled as Metal
in Wikipedia or Discogs) on the Hot 100 chart 1968-2000 (A). Dashed lines indicate empirical birth (red)
and death (blue) of EM metal bands (first bin dropped for clarity). Estimated rates and their 95% highest
posterior density intervals shown in solid colors.
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Figure 3: Estimated Diversification Rates and Carrying Capacities from Analyses 2 and 3.
Dashed lines indicate empirical birth (red) and death (blue) of EM metal bands (first bin dropped for clarity).
Estimated rates and their 95% highest posterior density intervals shown in solid colors. A: Estimated birth
and death rates over time for diversity-dependent competition model in Analysis 2. B: Estimated birth and
death rates for diversity-dependent competition with carrying capacity expansion due to key innovation in
Analysis 3. C: Estimated carrying capacities over time in Analyses 2 (orange) and 3 (purple) with 95%
highest posterior density intervals. Empirical population size shown in green.
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the what scholars call the Metal “Dark Ages” in the second half of the 1990s does correspond

with a chilling of growth after the fall from pop music (Kahn-Harris, 2006; Christe, 2010).

6.2 Analysis 2: Diversity-Dependent Competition Between Bands

Motivation: We interpret the competition signature across Phases 3-5 as evidence for a

carrying capacity on the limited resources of actors. Once the sonic, aesthetic, and social

parameters of the genre have become clear in the early 1980s, there is only so much cultural

space for new bands to occupy while still being understood as Metal by actors. We now

explore this formally using a mechanistic competition model.

Methods: Under diversity-dependent competition, we would expect birth rates to de-

crease over time and death rates to increase over time as the carrying capacity becomes

filled (Figure 1B). Within the expanded birth-death likelihood specified in Equation 2, we

can deploy this theory by parameterizing �(t) and µ(t) so that they are functions of the

fraction of the carrying capacity filled at time t:

�(t) = �max � (�max � )

✓
D(t)

K

◆�

µ(t) = µmin + (� µmin)

✓
D(t)

K

◆�

(3)

where,

�max = + �mul ⇤  µmin = � µmul ⇤  (4)

Our model has four main parameters: the value at which birth rates and death rates will

converge , the size of the carrying capacity K filled when the rates arrive at , a conve-

nience multiplier �mul for parameterizing the maximum birth rate �max, and a convenience

multiplier µmul for parameterizing the minimum death rate µmin. We calculate the fraction

of the carrying capacity filled as the size of the current population at time t, D(t), divided by

K. Additional parameters � and � allow the rates to vary non-linearly with the proportion

of the carrying capacity filled. In other words, these parameters modulate whether earlier

bands or later bands are more important drivers of competition (e.g., with � < 1 and � > 1,
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converge as carrying capacity filled
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innovation relaxes competition

Figure 3: Estimated Diversification Rates and Carrying Capacities from Analyses 2 and 3.
Dashed lines indicate empirical birth (red) and death (blue) of EM metal bands (first bin dropped for clarity).
Estimated rates and their 95% highest posterior density intervals shown in solid colors. A: Estimated birth
and death rates over time for diversity-dependent competition model in Analysis 2. B: Estimated birth and
death rates for diversity-dependent competition with carrying capacity expansion due to key innovation in
Analysis 3. C: Estimated carrying capacities over time in Analyses 2 (orange) and 3 (purple) with 95%
highest posterior density intervals. Empirical population size shown in green.
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innovation relaxes competition
by expanding carrying capacity

Figure 3: Estimated Diversification Rates and Carrying Capacities from Analyses 2 and 3.
Dashed lines indicate empirical birth (red) and death (blue) of EM metal bands (first bin dropped for clarity).
Estimated rates and their 95% highest posterior density intervals shown in solid colors. A: Estimated birth
and death rates over time for diversity-dependent competition model in Analysis 2. B: Estimated birth and
death rates for diversity-dependent competition with carrying capacity expansion due to key innovation in
Analysis 3. C: Estimated carrying capacities over time in Analyses 2 (orange) and 3 (purple) with 95%
highest posterior density intervals. Empirical population size shown in green.
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(note this model is more parsimonious
than direct rate modeling)



new genres build up the nichesubgenre label): Heavy, Doom, Power, Progressive, Thrash, Black, and Death). Finally, we

cumulatively summed these carrying capacities to construct a piecewise carrying capacity

trajectory (Figure 5).

Figure 5: Estimated Key Innovation Model versus Stacked Subgenre Carrying Capacities. Left:
Estimated carrying capacities from Fig. 3C. Right: Cumulative sum of sequenced maximum carrying
capacities estimated for each of the seven largest Metal subgenres, collectively labeling 94.9% of all bands.

This procedure yields an S-curve remarkably similar to the logistic curve chosen to model

carrying capacity expansion via key innovation (Analysis 3). We stress that this result was

neither expected or inevitable; the logistic function was chosen a priori for formal reasons

and is commonly used in biology to model carrying capacity growth—not to fit cultural

data. Nevertheless, the cumulative carrying capacity of these subgenres falls well within the

95% credible interval of the maximum carrying capacity estimated in Analysis 3 (Figure

5). Moreover, the period of maximum carrying capacity growth in Phase 2 aligns with

the emergence of what would ultimately become Metal’s three biggest subgenres (Thrash,

Death, and Black). Collectively, these correspondences provide strong evidence that Metal’s

carrying capacity expanded through the innovation of new subgenres.
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niche expansion through novelty

exhaustion of
the form

Figure 5: Estimated Diversification Rates from Analysis 5. Estimated diversification rates for new genres (bottom row), subgenres in the seven
largest genres (middle row), and bands within these genres (top row) using LiteRate. The inset genres, presented from left to right in order of size,
collectively label 94.9% of all bands. Estimated rates and their 95% highest posterior density intervals shown in solid colors. Statistically significant
rate shifts marked in yellow.

56



niche expansion through novelty

Limits of 
the ideal object

Figure 5: Estimated Diversification Rates from Analysis 5. Estimated diversification rates for new genres (bottom row), subgenres in the seven
largest genres (middle row), and bands within these genres (top row) using LiteRate. The inset genres, presented from left to right in order of size,
collectively label 94.9% of all bands. Estimated rates and their 95% highest posterior density intervals shown in solid colors. Statistically significant
rate shifts marked in yellow.
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niche expansion through novelty

(note: similar genre and sub-genre dynamics)
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a prediction borne out

Figure D7: LiteRate-estimated rates of all bands through 2016. Death times were imputed using the
procedure described in A.2.
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birth and death rates converge
consistent with carrying capacity being met
and no further innovations to expand niche
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Mathematics is the study of 
mental objects with 
reproducible properties.



Amie Wilkinson’s chalkboard, from Do Not Erase (PUP, 2021)



Intentionality:  
What the mind does when it’s directed 
toward something under a particular 
aspect… the “aboutness” of mental activity, 
the directness of the mind toward meaning, 
identification, recognition, purpose… 
—David Bentley Hart,  
All Things Are Full of Gods

Husserl

Brentano





How do mathematicians point their minds at the 
SAME mental object?



U S I N G  O N LY

• Natural language

• Formal language

• Pictures

• Computer exploration (nowadays)

• And of course lots of prior training



Mathematics seems to be a
limit case of (all?) other 
cases of collective 
intentionality. 



It is also a data-rich 
example of Couliano’s  
ideal object — 
as well as his notion of  
mind games 



It is also a data-rich 
example of Couliano’s  
ideal object — 
as well as his notion of  
mind games 





Mathematics is a practice 
for collectively tripping into 

the imaginal
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