Radical
Platonism and
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El‘ism

A discussion of Michael Levin's work as it pertains to his new research on
morphospace and “radical platonism” including the use of probabilistic
knowledge graphs and other formal methods to test these novel

hypotheses. |||il-

Most specifically, how can we formalize the language of form itself?



Outline

Levin Lab Research Program

Key philosophical questions
Morphospace-etymology and evolution
Morpho-empiricism 101

Levin Lab Morphospace

Bayesian + Knowledge Graphs

Kn dge Graphs in Science
PKGs
y and form, a side topic?

Next steps

Disclaimer : firehose



Research Program:

Build new interfaces to observe new ingressing forms - our
synthetic morphology work provides tools/vehicles/periscopes for
exploration of the space.

Infer a rigorous mapping between properties of the pointers and the
patterns they facilitate

Quantify the “free lunch” aspects - how much information/influence/
evolvability is injected into the physical world? Free compute?

Are the contents of this space under positive pressure?
Is the space sparse? Are some attractors “better” than others?

Are the contents of this space purely passive (eternal, unchanging)
or can we define a kind of “chemistry” of how these things interact
and live in their own space?

Are mathematical objects really “low agency”? Can we extend
standard behaviorist tests to their native space?

» Why? Where did the Platonic Space and its structure/contents

rom’? Could it have bee




Methodology

What do we actually know?
How can we extend this knowledge?
If we find an edge case that shows “ingress” or phenomena not covered in our
formal system, how can we evolve the system without introducing “fuzzy
logic”? (i.e. classic problem of platonisms)

teach this knowledge to others and

How ca
allo

do the same?

Hyperhuman Techniques and Technologies Database

s Ibﬂ

Cyberdelics: Designing immersive media for transpersonal experiences

———"-- Five new peer-reviewed publications accepted

Non-Pharmacological Induction of Altered States: Applying neural
DMTx data to calibrate a multisensory stimulation protocol

The Play Economy Mindset to Al-Driven Role-Play

|4

Hyperhuman Techniques and Technologies Database Workshop

becs
- for presentation at the British Computer Society |

The Software of Life:
How Michael Levin
Cracked the Bioelectric
Code of Intelligence

Joel Dietz

An overview of Michael Levin's revolutionary work, which challenges
the DNA-centric view of life by revealing a biological "software" layer.
This seminar explores how a bioelectric code orchestrates
development, demonstrated by two-headed worms that inherit new
body plans without genetic changes, and "Picasso" tadpoles that self-
correct scrambled anatomy. We will cover the core concepts of
collective cellular intelligence, the creation of novel lifeforms like
Xenobots and Anthrobots, and the profound implications for
regenerative medicine and bioengineering. Finally, we will touch upon
Levin's most speculative ideas, exploring his "radical Platonist"
framework where mathematical forms from a non-physical "latent
space" can "ingress" into biology, formalizing a future where Al may
be understood as peer lifeforms and presenting a possible
accelerationist framework for scientific research. This is an essential
overview for anyone interested in the intersection of biology,
computer science, and the future of intelligence.



Morphospace
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Goethe, 1786 , “ Urpflanze”

Ukich E Stegmann, Annals of Botany, Vokime 127, s

Wright S (1932) The roles of mutation,
inbreeding, crossbreeding, and selection in
w&ﬂm (| evolution. Proceedings of the Sixth

= 1 International Congress of Genetics 1: 356366

Turing Patter Simulation (Gray-Scott Model)
o

Raup DM (1966) Geometric analysis of
shell coiling: General problems. Journal
of Paleontology 40: 1178-1190.

Alan Turing, The Chemical Basis of
Morphogenesis, 1952



Raup (1962
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curve
b. (R d.

Fig. 1. Stages in the reconstruction of snail form from the four basic parameters.

Fig. 2. Hypothetical snail forms drawn from cross sections made by the computer method.




Raup (1967+)
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Squamata morphospace

kes and
squamates

PCO 2 (7.93% variance)

J Cluster2: ¢~

generalised
7 7 lizards

Cluster 3: anguimorphan
lizards

PCO 1 (10.58% variance)

Arnau BoletThomas L Stubbsjorge A Herrera-FloresMichael ] Benton (2022) The Jurassic rise of squamates as supported by lepidosaur
disparity and evolutionary rates eLife 11:66511. https://doi.org/10.7554/eLife.66511



Dental and cranial morphospace

B Carnivores /A Omnivores
@ Insectivores @ Herbivores
@ Durophages

Buriolestes  gogromasus

’?\ Thecodontosaurus

Plalsosaurus

~——

) o
Lasothosaurus =~ 1
’ : Massospondylus

06 0.4 02 0
PC1 (62.2%)

K\\ Low aspect ratio  High aspect ratio

B Herrerasaurus

Ballell, Antonio & Benton, Michael & Rayfield, Emily. (2022). Dental form
and function in the early feeding diversification of dinosaurs. Science

Advances. 8. 10.1126/sciadv.abq5201.

Marshall, Ashleigh & Bardua, Carla & Gower, David & Wilkinson,
Mark & Sherratt, Emma & Goswami, Anjali. (2019). High-density
three-dimensional morphometric analyses support conserved
static (intraspecific) modularity in caecilian (Amphibia:
Gymnophiona) crania. Biological Joumal of the Linnean Society.
126. 721-742. 10.1093/biolinnean/blz001.




Levin morphospace
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Basal cognition and Biomedical implications

>
o
-
@
c
@
o
@
[ 4
B

“lon-channel-targeting drugs are the
3rd best-selling group of prescribed
drugs, and only a few of the
estimated 400 annotated ion-channel
genes predicted in the human
genome have yet been targeted”

Levin M. Bioelectric signaling: Reprogrammable circuits
underlying embryogenesis, regeneration, and cancer. Cell.
2021 Apr 15;184(8):1971-1989. doi: 10.1016/j.cell.2021.02.034.
Epub 2021 Apr 6. PMID: 33826908.



Morphogenesis and the Picasso tadpole (2012)
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Anatomical Homeostasis & Bioelectric Memory (2018)




Xenobots (2020)

https://xenobots.github.io/
https://github.com/skriegman/reconfigurable organisms



https://xenobots.github.io/
https://github.com/skriegman/reconfigurable_organisms

Anthrobots

Gizem Gumuskaya, Tufts University




Bayesian Thinking 101

Hypothesis -> Simulation -> Test data against empiricism -> restart loop

TOM

MATH
BUSINESS

Math PhD

Tom is shy, or Business
school?

MATH: BUSINESS

Prior odds ratio [:lo
Likelthood ratio 75 : (5

Galef, J. (2016, September 29). A visual guide to Bayesian thinking [Video]. YouTube. https://www.youtube.com/watch?v=BrK7X_XIGB8



Anatomical Compiler




Knowledge graphs in science
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Callahan, T. J., I. ). Tripodi, A. L. Stefanski, L. Cappelletti, S. B. Taneja, ). M. Wyrwa, E. Casiraghi, et al. 2024. “An Open Source
Knowledge Graph Ecosystem for the Life Sciences.” Scientific Data 11 (1): 363. https://doi.org/10.1038/s41597-024-03171-w.
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Knowledge graphs in science
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Pablo Perdomo-Quinteiro, Alberto Belmonte-Herndndez, Knowledge Graphs for drug repurposing: a review of databases and methods,
Briefings in Bioinformatics, Volume 25, Issue 6, November 2024, bbae461, https://doi.org/10.1093/bib/bbae461




Knowledge graphs and machine learning
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2. Metapath

design

Femandez-Torras, A., Duran-Frigola, M., Bertoni, M. et al.
Integrating and formatting biomedical data as pre-calculated
knowledge graph embeddings in the Bioteque. =~ Nat Commun
5304 (2022). https://doi.org/10.1038/541467-022-33026-0

Sikos, L.F. Cybersecurity knowledge graphs. Knowl Inf Syst

13, 65, 35113531 (2023).
https:/doi.org/10.1007/s10115-023-01860-3



Knowledge graph ontology

bfo:material entity oboe:observation oboe:measurement
. T )
rdf:type rdf:type rdf:type
\

{ ) |
objectX —oboe:of entity observation —oboe:has measurement measurement T oboe:has value

. oy

oboe: of characteristic oboe:us\es standard

Zz \"\,

; : -
[ — weight ‘ kilogram
class instance ’ value .

rdf:type rdf:type
.
pato:weight uo:kilogram

Vogt, Lars, Tobias Kuhn, and Robert Hoehndorf. 2023. “Semantic Units: Organizing Knowledge Graphs into Semantically Meaningful
Units of Representation.” arXiv, January 3, 2023. https://doi.org/10.48550/arXiv.2301.01227.



Knowledge graph and nanopublications
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Giachelle F, Dosso D, Silvello G. Search, access, and explore life science nanopublications on the Web. Peer) Comput Sci. 2021 Feb
4;7:e335. doi: 10.7717/peerj-cs.335. PMID: 33816986; PMCID: PMC7959622.



Probabilistic knowledge graphs in drug discovery
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Schlander, M., Hernandez-Villafuerte, K., Cheng, CY.
et al. How Much Does It Cost to Research and
Develop a New Drug? A Systematic Review and

Liu C, Xiao K, Yu G, Lei VY, Lyu K, Tian T, et al. (2024) A probabilistic knowledge graph for target identification. PLoS Assessment. PharmacoEconomics 39, 1243-1269
Comput Biol 20(4): €1011945. https://doi.org/10.1371/journal.pcbi.1011945 (2021). https://doi.org/10.1007/s40273-021-01065-y
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Overview

Weight of Evidence (WoE). For a hypothesis H and evidence E,

P(E | H)

P(E|-H)

WoE adds in log-odds space. If Ey,..., E} are evidence items and py =
P(H),

WoE(E — H) = log

1
1+ exp( — logit P(H | E1))

k
logit P(H | Eyx) ~ logitpo+y  WoE(E;—~H),  P(H | Erx) =

i=1

Procedure

. Define a KG hypothesis H (e.g., truth of a triple (u,r,v) or a predicted
outcome).

. Choose graph-derived evidence units E; (motifs, metapaths, rules, prove-
nance, calibrated model scores).

. Estimate P(E; | H), P(E:; | —=H) on labeled data (with smoothing);
compute WoE;.

. Combine additively or via a regularized logistic model to handle depen-
dence and calibrate.

. Store posterior_prob, woe_total, woe breakdown, and provenance in

the KG.




Table 1: Summary (All Hypotheses)
Hypothesis Prior P(H) WOoE for WOoE against Posterior P(H |

L1 Bioelectric “code” is 0.660 3.109 -0.405 0.967
instructive /read-write

L2 Somatic pattern memory & 0.750 5.006 -0.693 0.996
bistability (planaria)

L3 Multiscale competency (regula- 1.872 -0.318 0.876
tive error correction)

L4 Pre-neural bioelectric computa- 2.660 -0.251 0.958
tion — GRNs/anatomy

L5 Cancer as bioelectric network : 1.476 -0.424 0.778
disorder (normalization helps)

L6 Morphological attractors; brief 1.800 -0.154 0.877
inputs switch basins

L7 Bioelectric gradients in LR/AP 2.747 -0.223 0.967
patterning (timing critical)

L8 “Cognitive glue”: GJ coupling ) 1.214 -0.223 0.788
scales competencies

L9 Reconfigurable body plans ; 2.244 -0.182 0.906
(Xenobots): design — function




[Ion channels /J Optogenetic / J
e

Gap junctions ionotrog)ci’c writ

50°

V3
H (L1): Endogendfis bioelectric patterns
encode instructive target morphology; (Target morphology Mj

read/write via% em & gap junctions
A ML >

g 2
J ]
Vimem imaging Mechanical / paracrine
(prepatterns) confounds

WoE summary for L1 (natural logs)
WoE¢,, = 1.386 + 0.847 4 0.875 = 3.109 WoE,gainst = —0.405
Prior P(H) = 0.66 = log 2 = 0.663 Easena

Posterior log-odds = 0.663 + 3.109 — 0.405 = 3.367 supports (edge label = WoE)
1 challenges (edge label = WoE)

Posterior P(H | E) = W ~ 0.967 Gray dashed = contextual KG relations
e ]




P
Perturbation:
GJ blocker (CBX / 183-GA) Stable across re-cuts

Y 7
, H (L2): Transient g%,p-junction blo
Species: it tic datt Outcome:
Schmidted’sp. rewrites somatic Iga ern memory = Bicapitate (two heads)

two-headed planarian regeneration
<

Ry
&,
1‘5&

Surgery: Controls:
Trunk fragment 2 hicle/timing = no effect
External validity:
L SJ

X
0.9&

imited cross-specie e

WoE summary for L2 (natural logs)
WoEso: = 2.773 +1.946 + 0.288 = 5.006 WoE.gainst = —0.693
Prior P(H) = 0.75 = logs25 = 1.100 Tiegend

Posterior log-odds = 1.100 + 5.006 — 0.693 = 5.413 supports (edge label = WoE)
1 challenges (edge label = WoE)

Posterior P(H | E) = 15 o548 ~ 0.996 Gray dashed = contextual KG relations
e—5 :




Bioelectric / mechanical / (Robust to multi-modal
biochemical cues perturbations

~ 300
supports, WoE = +0.847
: —‘ r —y,
/-—‘—- : . . .
Defoct turhation H (L3): Cell/tissue collectives exhibit
‘ efect / perturbation regulative, goal-directed error correction (Target morphology M)

56 Lby
e ¢ multiscale competency) to reach morphology M
s L ltiscal t t h hology M

Py _nkb -

N XV
\\' \\\"

h=]

et (confound)

y ) ~
(Diverse initial statcs) Hidden stem-cell rcscrvesJ

WoE summary for L3 (natural logs)
WoEg,, = 0.847 + 0.486 + 0.539 = 1.872 WoE.gainst = —0.318
Prior P(H) = 0.60 = logl—’_’—p = In(1.5) = 0.405 "Togend
Posterior lOg-OddS = (0.405 + 1.872 — 0.318 = 1.959 supports (edge label = WoE)

1 challenges (edge label = WoE)
Posterior P(H ] E) = 959 ~ 0.876 Gray dashed = contextual KG relations

14+e 1




[Tcmporal order: ]

bioelectric — TF (Anatomy / morphologﬂ

GRN state
(TF activity)

supports~WokE = +41.012

~0.25,

i Secondary Ca’" waves
(alternative driver)

WOoE summary for L4 (natural logs)
WoEor = 0.956 + 1.012 + 0.693 = 2.660 WoE.gainst = —0.251
Prior P(H) = 0.67 = logt2; = Ingg; ~ 0.708 Logond
Posterior log-odds = 0.708 + 2.660 — 0.251 = 3.117 supports (edge label = WoE)
1 challenges (edge label = WoE)

Posterior P(H | E) = W ~ 0.958 Gray dashed = contextual KG relations
e—3.




— Normalization:
Vinem de.v1at‘10n hyperpolarization or
(depolarization) GJ regtoration
R

V =
, H (L5): Disrupted tisgsue-level bioelectricity
Tissue context: . A .
[e J contributes to oncogelﬁems; restoring V., or

ithelium / tumo
a / gap-junction couplinga réduces tumor behaviours
&\ s y

proliferation / invasion

Outcomes: }

(connexins) (oncogenes, mutations)

{Reduced GJ coupling [Strong. g?netic drivers}

Microenvironment
(ECM stiffness, inflammation)

WoE summary for L5 (natural logs)

WoEsor = 0.405 + 0.619 + 0.452 = 1.476  'WoEagainst

= —0.318 — 0.105 = —0.424
Prior P(H) = 0.55 = log {2, = Ing:32 ~ 0.201 Hegend
Posterior log—odds =0.201 +1.476 — 0.424 = 1.253 supports (edge label = WoE)
1 challenges (edge label = WoE)

Posterior P(H | E) = m ~ 0.778 Gray dashed = contextual KG relations
e—1.




Hysteresis Critical timing
(path dependence) : ~ window

H (L6): Anatomical outcomes are attractors in a
morphospace; brief inputs can switch basins without

genomic edits, witQ stability after washout
O -

[ Intervention pulse
(

Attractor A,
timing & duration)

(new morphology)

XY

— - 0 15,
Post-washout ’ Irreversible damage
stability (confound)

WOoE summary for L6 (natural logs)

WoE¢o, = 0.788 + 0.693 + 0.318 = 1.800 WoEagainst = —0.154
Prior P(H) = 0.58 = log £ ~ 0.500 Legend

Posterior lOg-OddS = 0.500 + 1.800 — 0.154 = 2.146 supports (edge label = WoE)
1 challenges (edge label = WoE)
Posterior P(H | E) = m ~ 0.895 Gray dashed = contextual KG relations
e—2-




[Early cleavage /

gastrula window

| H (L7): Bably
left-right

Situs outcomes
(heterotaxia)

Ion pumps/channels

(e.g., H'-V-ATPase)

- — =
supports, WoE= +1.179

(e.g., Nodal, Lefty)

redundant pathways

[ LR markers 1 * Cilia flow / other ‘

WoE summary for L7 (natural logs)
WoEs,r = 1.030 4+ 1.179 + 0.539 = 2.747 WoEagainst = —0.223
Prior P(H) = 0.70 = logl—}}p ~ 0.900 Yagend

Posterior log-od(ls = 0.900 4 2.747 — 0.223 = 3.424 supports (edge label = WoE)
1 challenges (edge label = WoE)

Posterior P(]I | E) = ﬁ ~ 0.968 Gray dashed = contextual KG relations
+ e—3-42




Error-correction
score T

|

GJ connectivity
metrics (Cx levels, FRAP)

Recovery time

1

9.

"’J C/;
H (L8): Increased gap-junction connectivity
scales individual cell competencies into collective

error-correction (“cognjtive glue”) toward target M
N\ S

WoE summary for L8 (natural logs)
WoEs,r = 0.452 + 0.405 + 0.357 = 1.214 WoE,gainst = —0.223
Prior P(H) = 0.58 = loglJ}p ~ 0.500
Posterior log-odds = 0.500 + 1.214 — 0.223 = 1.491
1

Posterior P(H | E) = m ~ 0.816

Noise resilience

T

( Target morphology 1\4]

‘Mechanical coupling
(confound)

'Legend

supports (edge label = WoE)
challenges (edge label = WoE)
Gray dashed = contextual KG relations




In-vitro build
(assembly protocol)

supports, WoE = +0.452

/'———_—-

In-silico design
(geometry, cell types)

Environment
(medium, particles)

ﬁg —

H (L9): Recomposed cell collectives (e.g., Xenobots)

realize designed functions (locomotion, aggregation, replication)
without new genes, under specified environments

Kinematic
self-replication

Function F
(locomotion/aggregation)

- =
supports, Wokk = +0.69

WoE summary for L9 (natural logs)
WoE¢g:r = 0.452 + 0.693 + 1.099 = 2.244 WoEagainst = —0.182
Prior P(H) = 0.55 = log £ ~ 0.400
Posterior log-odds = 0.400 + 2.244 — 0.182 = 2.462
1
Posterior P(H | E) = 13 o236 ~ 0.921

672.4(;2

Environment sensitivity
(context limits)

Legend
supports (edge label = WoE)
challenges (edge label = WoE)

Gray dashed = contextual KG relations




Radical Platonism
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Probabilistic Knowledge Graph: Ingress / Radical Platonism
E6: Non-neural pattern
memory /bioelectrics
E5: Xenobots
kinematic replication
E2: Species-like heads
from same genome

E1: Planarian setpoint reset H1
(permanent, non-genetic)

E3: Early bioelectric cues 3 B C2: Limited independent,
replication

Bd4: I?cltOPig eyes enable NoTae oo C1: Control/dynamics
Vvisual learning 5 i ata
(Dynamical sufficiency) ' Spleinidata

set polarity

E v id(_' nce BT Ry odslpneed taruen C3: Few exclusive

morphologies/setpoints predictions

Bayes update (independent-evidence approximation):
Prior P(H1) =0.10, [[LR: = 2.377

Posterior odds = 350 x 2.377 =~ 0.264

. g E8: Programmatic synthesis a) & : Fully physic:
Node Dehnltlons: (Ingrcsszg;g Mm:l.s) ’ B data)710:309 iic}il:}znih;uﬁli
H: Radical Platonism is True
IH,: Non-Local Information Storage is True
g ; = Al Ay (el g B Item LR log;oLR decibans bits (log, LR)
I H>: Multiscale Competency is True T Ty T o

. o \  Rar e’ E2 1.500 0.176 1.761 0.585
IHj: Access to Latent Space of Forms is True B M0 D pol g0

v e 1 . J N § SOV E4 1.100 0.041 0.414 0.138
E,: Bioelectric Pre-patterns Observed i Ml gk e i

' . b ar / o daral A . E6 1.200 0.079 0.792 0.263
E5: Planarian Memory Persistence Observed W L an 0 e

. P ary / . 3 o E8 1.050  0.021 0.212 0.070
E5: Planarian Morphology Rewrite Observed R S

¥ . | y 10T y C2 0.800 —0.097 —0.969 —0.322
E4: Xenobot Novel Behawas Observed e M - -
E5: Ectopic Eye Function Observed

Weights of evidence (Good’s decibans) and bits

C4 0.850 —0.071 —0.706 —0.234
Total 2377 0.376 3.761 1.249




Ion channels /
Gap junctions

|

[ Optogenetic / J

IODOtI'ORJ(_, write

VY 0o,
H (L1): Endogendiis bioelectric patterns

encode instructive target morphology; [Targct morphology MJ
read/write via, Mmcm & gap junctions
0

[Vmem imaging]

Mcchdmc(ﬂj / paracrine
(prepatterns)

confounds

WOoE summary for L1 (natural logs)
WoE¢,, = 0.693 + 0.262 + 0.405 = 1.361 WoE,gainst = 0.223
Prior P(H) = 0.60 = log3E- = In(1.5) = 0.4

Legend
Posterior log-odds = 0.405 + 1.361 — 0.223 = supports (edge label = WoE, natural log)
1 challenges (edge label = WoE)

Posterior P(H I E) - W =~ 0.82| Gray dashed = contextual KG relations
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WoE summary for L2 (natural logs)
WoE¢,: = 1.138 + 0.405 + 0.182 = 1.725 WoE.gainst
= 0.357 + 0.223 + 0.163 = 0.743
Prior P(H) = 0.10 = log7%; = In(0.1/0.9) = —2.197
Posterior log-odds = —2.197 + 1.725 — 0.743 = —1.215

Posterior P(H | E) = H—lln' ~ 0.229
e1.215

3 ~0.163
Fully physical mechanisms
& no ontology gap shown

Legend
supports (edge label = WoE, natural log)
challenges (edge label = WoE)

Gray dashed = contextual KG relations




Beauty, a side topic?

aige ¥ ¢ fHED

D’Arcy Thompson, Growth and Form, 1917

J. Schmidhuber. Facial beauty and fractal geometry. Note

A Diirer, Four Books on Human Proportion, 1528 ESIA 28-98, IDSIA, June 1998 =
. Schmidhuber. Simple Algorithmic Pr of D Y, =ETLA
Attention, Curiosity & Creativity. In V. Corruble, M. Takeda, E. Suzuki, eds., Proc. 10th Intl. Conf.
on Discovery Science (DS 2007) p. 26-38, LNAI 4755, Springer, 2007. Also in M. Hutter, R. A.
Servedio, E. Takimoto, eds., Proc. 18th Intl. Conf. on Algorithmic Learning Theory (ALT 2007) p. 32,
LNAI 4754, Springer, 2007. (Joint invited lecture for DS 2007 and ALT 2007, Sendai, Japan, 2007.)
Preprint: arxiv:0709.0674.



http://www.idsia.ch/~juergen/locoface/locoface.html

In the morphology of living things the use of mathematical methods and symbols has made slow progress ; and there are various reasons for this
failure to employ a method whose advantages are so obvious in the investigation of other physical forms. To begin with, there would seem to be a
psychological reason lying in the fact that the student of living things is by nature and training an observer of concrete objects and phenomena, and the
habit of mind which he possesses and cultivates is alien to that of the theoretical mathematician. But this is by no means the only reason; for in the
kindred subject of mineralogy, for instance, crystals were still treated in the days of Linnaeus as wholly within the province of the naturalist, and were
described by him after the simple methods in use for animals and plants: but as soon as Haiiy showed the application of mathematics to the description
and classification of  crystals, his methods were immediately adopted and a new science came into  being.

A large part of the neglect and suspicion of mathematical methods in organic morphology is due (as we have partly seen in our opening chapter) to an
ingrained and deep-seated belief that even when we seem to discern a regular mathematical figure in an organism, the sphere, the hexagon, or the
spiral which we so recognise merely resembles, but is never entirely explained by, its mathematical analogue; in short, that the details in which the
figure differs from its math ematical prototype are more important and more interesting than the features in which it agrees , and even that the
peculiar aesthetic pleasure with which we regard a living thing is somehow bound up with the departure from mathematical regularity which it
manifests as a peculiar attribute of life. This view seems to me to involve a misapprehension. There is no such essential difference between these

s y . . RN 642 : : i
phenomen and those which are manifested in portions of inanimate matter Y . No chain hangs in a perfect catenary and no raindrop
is a perfect his for the simple reason that forces and resistances other than the main one are inevitably at work. The same is true of organic
form, but it'i € mathematician to unravel the conflicting forces which are at work together. And this process of investigation may lead us on step

by step to new phenomena, as it has done in physics, where sometimes a knowledge of form leads us to the interpretation of forces, and at other times
a knowledge of the forces at work guides us towards a better insight into form. | would illustrate this by the case of the earth itself. After the
fundamental advance had been made which taught us that the world was round, Newton showed that the forces at work upon it must lead to its being
imperfectly spherical, and in the course of time its oblate spheroidal shape was actually verified. But now, in turn, it has been shown that its form is still
more complicated, and the next step will be to seek for the forces that have deformed the oblate spheroid.

(722}

D'Arcy Wentworth Thompson


https://www.gutenberg.org/files/55264/55264-h/55264-h.htm?utm_source=chatgpt.com#fn642

Fractals and beauty?

Fig. 12. Halley plot, x: =5.0 = 5.0, y: =5.0 > 5.0,z = z**  Fig. 14. Newton plot, x: —5.0 = 5.0, y: =5.0 = 5.0, z = z*?

- 1. + sin(z).

Michael Levin, “Discontinuous and Alternate Q-System Fractals,” Computers & Graphics 18, no. 6
(1994): 873-884, https://doi.org/10.1016/0097-8493(94)00107-3 .



What’s our baseline?

Shut up and engineer? * Our lab mission is not to produce philosophy that is undecidable and will hang out
among the long list of ideas that have been kicked around for centuries with no resolution in sight. ... Engineering
in the broad sense is a critical method for deciding between competing worldviews and frameworks: the best ones
are the ones that enable the most fruitful relationships with the world and its diverse levels of agency”

Patterns Come From Genetics, Environment, and ??
2=2347

Javaheri Javid, M.A. (2022). Aesthetic
Evaluation of Experimental Stimuli Using
Spatial Complexity and Kolmogorov
Complexity. In: Martins, T.,
Rodriguez-Fernandez, N., Rebelo, S.M.

(eds) Artificial Intelligence in Music,

Sound, Art and Design. EVFOMUSART

2022. Lecture Notes in Computer

Science, vol 13221. Springer, Cham. e

https://doi.org/10.1007/978-3-031-03789-4 "o ) J SCHIDHUBER 1990
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Innovation Timeline:

Experiments per year
—— Publications per year
-~ Cumulative morphologies

Planform morphospace

Experiments, Publications, and Total Morphologies

Name:  Igkesias 2008 Fig. 1: 2 day Injection Manpuiation
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« thonpson-1917. py : A simple demonstration of D'Arcy Thompson's theory of transformations, showing how
one shape can be deformed into another.

« turing-norpho. py : A simulation of the Gray-Scott reaction-diffusion model, which generates classic Turing
patterns like spots and stripes.

« raup.py : Implements Raup's classic model of shell coiling, generating a variety of 3D shell forms.

« Cervera-Levin-Hafe.py : A reaction-diffusion demo inspired by Cervera-Levin-Mafe (2021), exploring
morphogen antagonism and its effect on pattern formation.

« morpho-range. py : Generates a grid of abstract shapes by sweeping through a morphospace of reaction-
diffusion parameters.

« planarian-norphogen.py : Simulates the generation of a planarian body shape, including eyes and pharynx,
from underlying morphogen gradients. Can produce an animated GIF of the process.

« levin-pkg.py : An incomplete script intended to build an interactive knowledge graph of Michael Levin's
work.



https://github.com/fractastical/infinitemorphospace

Next steps

1. Developing a predictive morphospace language that cracks the
bioelectric Code: (i.e. mapping specific bioelectric patterns to
specific downstream gene expression cascades and morphological

outcomes) «<— Raup 2.0
ing the Mechanism of Non-Neural Memory

3. !!ucation and knowledge maps of what we know including LLM
input
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