
Abstract: This presentation offers an informal review of Platonic forms as seen through the 

lens of the free energy principle. It addresses the question "what is a state of being?" And 

answers this question through appeal to a recursive definition of the state of things at 

successive scales. Mathematically, this is expressed via the renormalization group. The 

implicit scale-invariance is taken as a foundational structure for the nature of things. I will 

unpack this perspective using a couple of instances in which it has been applied theoretically 

in the context of theoretical biology, empirically in the context of characterizing 

neuroimaging timeseries, and in machine learning, in the form of renormalizing generative 

models.
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On the (Platonic) nature of things

 Karl Friston



The statistics of life Markov blankets, Bayesian mechanics

   and simulations of a primordial soup

Renormalization group From states to particles, and back again

Examples  Empirical, theoretical and practical

Coda   Goldilocks and dissipative structures



“How can the events in space and time which take place 

within the spatial boundary of a living organism be 

accounted for by physics and chemistry?”

 (Erwin Schrödinger 1943)

The Markov blanket as a statistical boundary

(parents, children and parents of children)

Internal states
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Active states

( , , )ss f s a = +

( , , )a af s a   − 
External states Internal states

Sensory states

( , , )f s a   − ( , , )f a s  = +

brain

s x a x

External states Internal states

x x  bacillus

Markov blankets everywhere



( | )p x m

( )x f x = +

The Fokker-Planck equation ( | ) ( )p x m f p=  −

( | ) 0 ( ) ( ) ln ( | )p x m f x Q p x m=  = − 

And its solution in terms of curl-free and divergence-free components

Random dynamic systems and pullback attractors



The dynamics (i.e., flow) at NESS

( ) ln ( | )Qf f f Q p x m= + =  − 

Conservative

Dissipative



Birth

Fertilisation

Implantation

Gastrulation

EmbryogenesisGrowth

Primordial germ cell

Genital ridge
Oocyte

Egg cell

Zygote Blastocyst

Life cycles (from one point of view)



But what about the Markov blanket?
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Reinforcement learning

Optimal control theory

Expected utility theory
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Minimum redundancy 

Free-energy principle
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The statistics of life simulations of a primordial soup
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Simulations of a (prebiotic) primordial soup
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Hidden states

Sensory states

Active states

Internal states

T TB J J J J= + +

Markov Blanket = B · [eig(B) > u]

The Jacobian encodes the children, parents and parents of children

Finding the Markov blanket

Is this a particle?



The renormalization group, from states to particles, and back again

Now, let us ask a more fundamental question: what is a state? This question 

can be dissolved by appealing to an infinite regress along the following lines: 

• What is a state? A state is an eigenstate of a particle’s Markov blanket.

• What is a particle? A particle is a set of blanket and internal states.

• What is a state? A state is … and so on.

An eigenstate here refers to the amplitude of an eigenmode of blanket states; 

namely, the principal eigenvectors of their Jacobian (i.e., rate of change of flow 

with respect to state). These mixtures are formally identical to order 

parameters in synergetics that reflect the amplitude of slow, unstable 

eigenmodes (Haken, 1983). In terms of centre manifold theory, they correspond 

to solutions on the slow (unstable or centre) manifold (Carr, 1981; Davis, 

2006).



Bayesian mechanics: the 

dynamics of anything can be 

described as active inference

But before Bayesian 

mechanics….

• Particles: a set of (microscopic) blanket 

and internal states

• States: a set of (macroscopic) Eigen (self) 

functions of blanket states
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Scale-invariance and RG operators
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Blanket states
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Hierarchical decomposition
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Variance of voxels Disttance between particles
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1024 states, 1024 particles

(1024 eigenstates)

Jacobian

States
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1024 states, 57 particles

(296 eigenstates)

Jacobian

States

50 100 150 200 250

50

100

150

200

250

0 100 200
-10

-5

0

5

10

Time constants

states

se
co

nd
s

Particle 1 of 57 (1,29,44)

8 eigenmodes

Particle 2 of 57 (1,13,36)

7 eigenmodes

Particle 3 of 57 (1,15,49)

8 eigenmodes

Particle 4 of 57 (1,11,20)

8 eigenmodes

Particle 5 of 57 (1,16,65)

8 eigenmodes

Particle 6 of 57 (1,26,58)

8 eigenmodes

Particle 7 of 57 (1,8,28)

8 eigenmodes

Particle 8 of 57 (1,12,58)

8 eigenmodes

Particle 9 of 57 (0,1,13)

7 eigenmodes

Particle 10 of 57 (0,1,9)

5 eigenmodes

Particle 11 of 57 (0,1,11)

7 eigenmodes

Particle 12 of 57 (0,1,9)

4 eigenmodes



296 states, 5 particles

(32 eigenstates)

Jacobian

States
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32 states, 1 particles

(8 eigenstates)
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Consider the following RG flow or beta 

function:

 

This says as we move from one scale to 

the next, the time scale increases by eβτ ≥1. 
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Scale Spatial 

scale

Time 

scale

Example

-8 4.38 µm 380 µs Dendritic spines occur at a density of up to 5 spines per µm of 

dendrite. Spines contain fast voltage-gated ion channels with time 

constants in the order of 1 ms.

-4 89.3 µm 11.9 ms A cortical minicolumn: a minicolumn measures of the order of 40–

50 µm in transverse diameter 80 μm spacing (Peters & Yilmaz, 

1993). The membrane time constant of a typical cat layer III 

pyramidal cell is about 20 ms.

0 1.82 mm 374 ms A cortical hypercolumn (e.g., a 1 mm expense of V1 containing 

ocular dominance and orientation columns for a particular region 

in visual space (Mountcastle, 1997)). Typical duration of evoked 

responses in the order of 1 to 300 ms (c.f., the cognitive moment).

4 37.2 mm 11.8 sec The cerebellum is about 50 mm in diameter, corresponding to the 

size of cortical lobes. Sympathetic unit activity associated with 

Mayer waves within frequency of 0.1 Hz (wavelength of 10 

seconds).

8 758 mm 6.15 

min

A dyadic interaction (e.g., a visit to your doctor).

12 15.5 m 3.22 hrs A dinner party for six guests, lasting for several hours.

16 .31 km 4.21 

days

An international scientific conference (pre-coronavirus).

Generative models and spatiotemporal scales



Active kinds
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Generalised discrete state 

space models

(with temporal dilation)
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Coda

Turtles all the way down?
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Newton’s laws of motion and 

classical (Lagrangian) mechanics

Complex (Quantum) systems
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Time-independent Schrödinger 

equation and quantum mechanics

Open systems

(with a Markov blanket)
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“Only when a system behaves in a 

sufficiently random way may the 

difference between past and future, and 

therefore irreversibility, enter its 

description.”

― Ilya Prigogine, Order Out of Chaos: 

Man's New Dialogue with Nature



The “Siphonaptera”, sometimes referred to as Fleas:

Greater fleas have little fleas,

Upon their backs to bite 'em,

And little fleas have lesser fleas,

and so, ad infinitum.

Complex systems do not forget their initial 

conditions: they “carry their history on their backs” 

― Prigogine, Spring 1995, US Naval Academy.

Summary
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