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Gameplan

1. Background: what are embeddings?

2. vec2text: How much information do embeddings leak?

3. vec2vec: Translating embeddings with no help

4. Conclusion



From language models to embeddings

When most people think of  language models, they think of  text-to-text models.



From language models to embeddings

Despite emitting text, LMs operate on vector representations of  the text called embeddings.



From language models to embeddings

LM weights are usually trained with data from the entire internet…

Internet Data



From language models to embeddings

… imbuing these vector representations with strong semantic priors.

Internet Data



From language models to embeddings

Language models that just emit embeddings are called encoders



From language models to embeddings

Semantic priors (+ some post-training) make encoders useful!



Example: Search!

Each point represents a document.



 

LLM

Example: Search!

Each point represents a document.



“… ?” 

LLM

A user can ask a question…



And “retrieve” a related document as an answer.

 



Question: Why are embeddings so useful for search?



Simpler setup: Word embeddings

Predecessor to document embeddings: each word → vector!



Similar vectors = similar meaning

word embeddings

panda

Semantically related words map to numerically similar vectors!



Geometry of  word embeddings

source: Google



“king” – “man” + “woman” = “queen”

Geometry of  word embeddings



Semantic similarity in embeddings

“Barking”

Modern encoders generalize this notion to whole documents and different modalities.



Semantic similarity in embeddings

Closeness is a property of  the inputs…



Semantic similarity in embeddings

“Barking”

Regardless of  encoder or modality!



Modern embeddings

Retrieval (Semantic Search)

Summarization

Retrieval augmented generation 

(RAG) in LLMs



Companies training embedding models



Embeddings power memory



The rise of  vector databases
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Question: How much information 

about a document is preserved by 

its vector representation?



[Acme, LLC]

(hosting data for

Atlantis Hospital)

[5.628, 4.456 ...]

Reframed: What can a bad actor learn from just looking at embeddings of  text?

3. Receive results

2. Send query emb.

1. Store data (embs)

Data about a person

User

[-0.008, 0.173, ...]

“Rhona Arntson 

npn/- # resp: 

infant re- 353 mains 

orally intubated on 

imv / r f ”

Embedding



Challenges:

1. Small changes in input text (one word!) produce different vectors

2. Data processing inequality



Answer: Embeddings leak almost everything!



vec2text

Intuition: Repeatedly query an encoder with candidate texts until the embeddings are close to target!



Key Idea: Encoders imbue lots of  semantic information 
in their embeddings.



Key Idea: Encoders imbue lots of  semantic information 
in their embeddings.

… an attacker with access to embeddings and encoder can reconstruct original text!
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1. Background: what are embeddings?

2. vec2text: How much information do embeddings leak?

3. vec2vec: Translating embeddings with no help
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Question: What if  we don’t have access to the original 
encoder? Do embeddings contain enough information still?



[5.62833 4.45560 7.09206 1.70772 8.53488 … 2.81810]

[8.32360 0.17597 6.37227 7.09399 4.30062 … 5.91650]

[2.05302 4.23975 6.58735 1.82040 8.01594 … 7.40739]

[3.08180 7.25108 5.14575 2.28853 1.18346 … 2.87634]

[0.82509 8.74585 4.85676 5.90278 1.30682 … 1.09638]

[3.36469 8.70506 6.34738 3.00865 8.25189 … 7.84836]

[8.75593 2.19901 1.14154 2.48679 8.53991 … 8.24471]

[5.72269 8.46621 3.27051 6.58750 8.80183 … 2.80392]

[3.34592 5.21735 2.51893 5.21443 8.57784 … 6.69609]

…

[1.52108 1.68765 3.82813 0.27698 7.82777 … 1.54355]



Invert this!

“Found some embeddings lying on the floor!”

[5.62833 4.45560 7.09206 1.70772 8.53488 … 2.81810]

[8.32360 0.17597 6.37227 7.09399 4.30062 … 5.91650]

[2.05302 4.23975 6.58735 1.82040 8.01594 … 7.40739]

[3.08180 7.25108 5.14575 2.28853 1.18346 … 2.87634]

[0.82509 8.74585 4.85676 5.90278 1.30682 … 1.09638]

[3.36469 8.70506 6.34738 3.00865 8.25189 … 7.84836]

[8.75593 2.19901 1.14154 2.48679 8.53991 … 8.24471]

[5.72269 8.46621 3.27051 6.58750 8.80183 … 2.80392]

[3.34592 5.21735 2.51893 5.21443 8.57784 … 6.69609]

…

[1.52108 1.68765 3.82813 0.27698 7.82777 … 1.54355]



Without knowing the encoder, the vectors are seemingly 
meaningless! Like trying to read alien without any aliens!

What can we do???



Unsupervised embedding translation

Idea: Translate our leaked vectors 𝑢𝑖 𝑖=0
𝑛  to a known space and run analysis there! 



Unsupervised embedding translation

Note: We do not have access to the documents, 𝑀1, or matches 𝑣𝑖 𝑖=0
𝑛 !



Our hope: Use the semantic structure of  language as our 
Rosetta Stone!



Semantic similarity in embeddings

“Barking”

Recall: For any encoder to be useful, semantically related inputs must encode into similar vectors.



Semantic similarity in embeddings

“Barking”

Semantic similarity is a property of  content not encoder!



Platonic Representation Hypothesis [Huh et al., 2024]:

“Neural networks, trained with different objectives on different data and modalities, 

are converging to a shared statistical model of  reality in their representation spaces.”

Is semantic structure universal?



Key idea: Alignment of  vector spaces

If  the PRH is right, there should be a shared statistical model of  the two spaces!



Key idea: Alignment of  vector spaces

Hope: We can (1) characterize and (2) translate to and from a shared latent representation!



CycleGAN: A technique for image translation

Inspiration: We adapt this method to text and use a different neural architecture.



Our approach: vec2vec



Our approach: vec2vec

Recall, we’re given:
1. A set of  “leaked” embeddings from an unknown encoder and unknown documents,

2. A known encoder and known (unmatched) documents.



Our approach: vec2vec

We then attempt to learn a shared representation, L, between the sets.

L

unknown known



Our approach: vec2vec

L is our Rosetta Stone between embedding spaces.

L



Our approach: vec2vec

Architecturally:
1. For each embedding space we have an input adapter A and an output B,

2. (Important) Input adapters share some weights T.

unknown known



Our approach: vec2vec

Shared weights T attempt to ensure both sets use the same parameters to encode similar semantics.



Our approach: vec2vec

Each component is a residual MLP (read. standard neural network).



Our approach: vec2vec

CycleGAN: compare an embedding with its out-and-back translation.

unknown known



Our approach: vec2vec

CycleGAN: “Discriminator” compares distributions of  out-translations and target embedding space.

unknown known



Our approach: vec2vec

We also include a few other structure-preserving losses.

Reconstruction Vector Space Preservation



Experiments

We run experiments with 7 different encoders, each trained with different algorithms and data…



Experiments

… vastly different parameter sizes…



Experiments

… model architectures…



Experiments

… vintages…



Experiments

… and even embedding dimensionalities!



Experiments

Some of  the encoders are multimodal…



Experiments

and others multilingual.



Experiments

Numerically, embeddings of  different architectures produce very different vectors.



Universal language of  embeddings

But, in latent space, converge to very similar representations!



Inverting unknown embeddings

Circling Back: The translations maintain critical semantic information.



Inverting unknown embeddings

And leak sensitive information when inverted!



Conjecture: If  you can retrieve, we can invert! 

Intuition: Using homomorphic encryption, many proposals for encrypted 
embeddings look to preserve search. Search requires comparing 
encrypted embeddings for similarity, which is all we need for vec2vec!



Modality “stitching”

We can even “stitch” additional modalities onto unimodal models via translation!



Universal language of  embeddings

Finding: Not only do universal representations exist, but we can characterize and use them!



Strong Platonic representation hypothesis: “The universal 
latent structure of  text representations can be learned and, 
furthermore, harnessed to translate representations from one 
space to another without any paired data or encoders.”



Platonic Representation Hypothesis [Huh et al., 2024]:

“Neural networks, trained with different objectives on different data and modalities, 

are converging to a shared statistical model of  reality in their representation spaces.”

Is semantic structure universal?

“Barking”



We conjecture that the Strong Platonic Representation 
Hypothesis is true with embeddings of  all modalities… 
we’re yet to show this!



Gameplan

1. Background: what are embeddings?

2. vec2text: How much information do embeddings leak?

3. vec2vec: Translating embeddings with no help

4. Conclusion



So, are all AI models the same?

Each encoder we tested reduced to vec2vec’s universal latent space: old, 
new, big, small, different architectures, different dimensions, and different 
training recipes.



Yet, each encoder has vastly different performance!

Interpretation: Each encoder is a lens onto the Platonic structure of  
semantics—some lenses capture the world in sharper focus, others in 
blurrier or more distorted form, but they seem to observe the same reality.



Ad astra per aspera

More stable translation methods

• GANs are brittle and finicky

More modalities: images, audio, …

Translate and invert encrypted embeddings

Translate internal representations of  LLMs

Translate across languages

Characterize the universal geometry of  meaning?



source: Vice

source: Wolfram





QUESTIONS?

Kepler’s celestial geometry of

Platonic solids
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