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Gameplan

Background: what are embeddings?
vecZ2text: How much information do embeddings leak?

vec2vec: Translating embeddings with no help
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Conclusion



From language models to embeddings

When most people think of language models, they think of text-to-text models.



From language models to embeddings

Despite emitting text, LMs operate on vector representations of the text called embeddings.



From language models to embeddings

Internet Data

LM weights are usually trained with data from the entire internet...



From language models to embeddings
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... imbuing these vector representations with strong semantic priors.




From language models to embeddings

Language models that just emit embeddings are called encoders



From language models to embeddings
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Semantic priors (+ some post-training) make encoders usetul!



Example: Search!
Each point represents a document.




Example: Search!
Each point represents a document.

LLM




A user can ask a question...

LLM




And “retrieve’” a related document as an answetr.




Question: Why are embeddings so usetul for search?



Simpler setup: Word embeddings
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Predecessor to document embeddings: each word - vectot!



Similar vectors = similar meaning

word embeddings

Semantically related words map to numerically similar vectors!



Geometry of word embeddings
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Geometry of word embeddings
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Semantic similarity in embeddings

I Dogs have been humanity's faithful companions for thousands of years, evolving from their

Barking’ wolf ancestors into the incredibly diverse array of breeds we know today. From the tiny

Modern encoders generalize this notion to whole documents and different modalities.



Semantic similarity in embeddings

Dogs have been humanity's faithful companions for thousands of years, evolving from their
wolf ancestors into the incredibly diverse array of breeds we know today. From the tiny

Closeness 1s a property of the inputs...



Semantic similarity in embeddings
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Regardless of encoder or modality!



Modern embeddings

Retrieval (Semantic Search)

Summarization

Retrieval augmented generation
(RAG) in LLMs




Companies training embedding models
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Embeddings power memory
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ChatGPT will now remember your old conversations / Long-
term memory allows ChatGPT to reference details you discussed,
even if you didn’t manually save them.
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The rise of vector databases
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Databases that support vector search
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Gameplan

Background: what are embeddings?

vec2text: How much information do embeddings leak?

vec2vec: Translating embeddings with no help

= b=

Conclusion



Question: How much information
about a document 1s preserved by
i5 vector representation?
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Reframed: What can a bad actor learn from just looking at embeddings of text?



The data processing inequality is an information theoretic concept that states that
the information content of a signal cannot be increased via a local physical
operation. This can be expressed concisely as 'post-processing cannot increase
information".[")

Challenges:
1. Small changes in input text (one word!) produce different vectors

2. Data processing inequality



Answer: Embeddings leak almost everything!

Text Embeddings Reveal (Almost) As Much As Text

John X. Morris, Volodymyr Kuleshov, Vitaly Shmatikov, Alexander M. Rush
Department of Computer Science
Cornell University

Abstract impossible to invert exactly. Furthermore, when

querying a neural network through the internet, we

. L may not have access to the model weights or gradi-
beddings reveal about the original text? We

investigate the problem of embedding inver- ents .at all: _ )
sion, reconstructing the full text represented Still, given input-output pairs from a network,
in dense text embeddines We frame the nrab- it 1s often possible to approximate the network’s

How much private information do text em-




vec2text

Original text

Hypothesis (Round 0)

Embedding

Intuition: Repeatedly query an encoder with candidate texts until the embeddings are close to target!



Key Idea: Encoders imbue lots of semantic information
in their embeddings.



Key Idea: Encoders imbue lots of semantic information
in their embeddings.

... an attacker with access to embeddings and encoder can reconstruct original text!



Gameplan

Background: what are embeddings?
vecZ2text: How much information do embeddings leak?

vec2vec: Translating embeddings with no help

sl

Conclusion



Question: What if we don’t have access to the original
encoder? Do embeddings contain enough information still?
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Invert this!
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Without knowing the encoder, the vectors are seemingly
meaningless! Like trying to read alien without any aliens!

What can we dor??



Unsupervised embedding translation

Unknown Space Known Space
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Idea: Translate our leaked vectors {u;}i= to a known space and run analysis there!



Unsupervised embedding translation

Unknown Space Known Space
F(ui) = vi
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Note: We do not have access to the documents, My, or matches {v;}i=,!



Our hope: Use the semantic structure of language as our
Rosetta Stonel!



Semantic similarity in embeddings

L Ak

Recall: For any encoder to be useful, semantically related inputs must encode into similar vectors.



Semantic similarity in embeddings

“Barking”

Semantic similarity is a property of content not encoder!



Is semantic structure universal?

Platonic Representation Hypothesis [Huh et al., 2024]:
“Neural networks, trained with different objectives on different data and modalities,
are converging to a shared statistical model of reality in their representation spaces.”



Key idea: Alignment of vector spaces

Embeddings [Originall Latent Representations [vec2vec]

If the PRH is right, there should be a shared statistical model of the two spaces!



Key idea: Alignment of vector spaces

Embeddings [Originall Latent Representations [vec2vec]

Hope: We can (1) characterize and (2) translate to and from a shared latent representation!



CycleGAN: A technique for image translation

Monet Z_ Photos Zebras T Horses Summer > Winter

Photograph Van Gogh ' Ukiyo-e

Inspiration: We adapt this method 7 zexzand use a different neural architecture.



Our approach: vec2vec
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Our approach: vec2vec

Documents (D) Embeddings of D Embeddings of W Documents (W)
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Secret

Recall, we’re given:

1. A set of “leaked” embeddings from an unknown encoder and unknown documents,
2. A known encoder and known (unmatched) documents.



Our approach: vec2vec

unknown

We then attempt to learn a shared representation, L, between the sets.



Our approach: vecZvec

L is our Rosetta Stone between embedding spaces.



Our approach: vec2vec

unknown known

Architecturally:
1. For each embedding space we have an input adapter A and an output B,
2.  (Important) Input adapters share some weights T.



Our approach: vec2vec

Shared weights T attempt to ensure both sets use the same parameters to encode similatr semantics.



Our approach: vec2vec

Fach component is a residnal MI.P (read. standard neural network).



Our approach: vec2vec

unknown

CycleGAN: compare an embedding with its out-and-back translation.



Our approach: vec2vec

unknown

CycleGAN: “Discriminator” compares distributions of out-translations and target embedding space.



Our approach: vecZvec

A
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We also include a few other structure-preserving losses.



Experiments

Model Params (M) Backbone Year Dims
|47] gtr 110 TS5 2021 768
|50] clip 151 CLIP 2021 512
|58] e5 109 BERT 2022 768
|32] gte 109 BERT 2023 768
|68] stella 109 BERT 2023 768
|14] granite 278 RoBERTa 2024 768
|12] gqwen3 4000 Qwen 2025 2048

We run experiments with 7 different encoders, each trained with different algorithms and data...



Experiments

Model Params (M) Backbone Year Dims
|47] gtr 110 TS5 2021 768
|50] clip 151 CLIP 2021 512
|58] e5 109 BERT 2022 768
|32] gte 109 BERT 2023 768
|68] stella 109 BERT 2023 768
|14] granite 278 RoBERTa 2024 768
|12] gqwen3 4000 Qwen 2025 2048

... vastly different parameter sizes...



Experiments

Model Params (M) Backbone Year Dims
|47] gtr 110 TS 2021 768
|50] clip 151 CLIP 2021 512
|58] e5 109 BERT 2022 768
|32] gte 109 BERT 2023 768
|68] stella 109 BERT 2023 768
|14] granite 278 RoBERTa 2024 768
|12] gqwen3 4000 Qwen 2025 2048

... model architectures...



Experiments

Model Params (M) Backbone Year Dims
|47] gtr 110 TS5 2021 768
|50] clip 151 CLIP 2021 512
|58] e5 109 BERT 2022 768
|32] gte 109 BERT 2023 768
|68] stella 109 BERT 2023 768
|14] granite 278 RoBERTa 2024 768
|12] gqwen3 4000 Qwen 2025 2048

... vintages...



Experiments

Model Params (M) Backbone Year Dims
|47] gtr 110 TS5 2021 768
|50] clip 151 CLIP 2021 512
|58] e5 109 BERT 2022 768
|32] gte 109 BERT 2023 768
|68] stella 109 BERT 2023 768
|14] granite 278 RoBERTa 2024 768
|12] gqwen3 4000 Qwen 2025 2048

... and even embedding dimensionalities!



Experiments

Model Params (M) Backbone Year Dims
|47] gtr 110 TS5 2021 768
|50] clip 151 CLIP 2021 512
|58] e5 109 BERT 2022 768
|32] gte 109 BERT 2023 768
|68] stella 109 BERT 2023 768
|14] granite 278 RoBERTa 2024 768
|12] gqwen3 4000 Qwen 2025 2048

Some of the encoders are multimodal...



Experiments

Model Params (M) Backbone Year Dims
|47] gtr 110 TS5 2021 768
|50] clip 151 CLIP 2021 512
|58] e5 109 BERT 2022 768
|32] gte 109 BERT 2023 768
|68] stella 109 BERT 2023 768
|14] granite 278 RoBERTa 2024 768
[12] qwen3 4000 Qwen 2025 2048

and others multilingual.



Experiments

Similarity of Inputs
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Numerically, embeddings of different architectures produce very ditferent vectors.



Universal language of embed
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But, in latent space, converge to very similar representations



Inverting unknown embeddings

Circling Back: The translations maintain critical semantic information.



Inverting unknown embeddings

..... arads
e Ground Truth: “Subject: Enron Bashing on Frontline \n Body:..."
di _‘:- - Generation: “Some emails discussing NROn Employee/s Complaint To thePublic ..."

Ground Truth: “Subject: Trades for 3/1/02 \n Body: \n John , \n The following trades..."
Generation: “... future transactions may await John G..."

Ground Truth: “ The following expense report is ready for approval..."
Generation: “ The upcoming expense statement from YYYY MM Dec..."

And leak sensitive information when inverted!



Conjecture: If you can retrieve, we can invert!

Intuition: Using homomorphic encryption, many proposals for encrypted
embeddings look to preserve search. Search requires comparing
encrypted embeddings for similarity, which is all we need for vec2vec!



Modality “stitching”

We can even “stitch’ additional modalities onto unimodal models via translation!



Universal language of embeddings

Embeddings [Original Latent Representations [vec2vec]

Finding: Not only do universal representations exist, but we can characterize and use them!



Embeddings [Original] Latent Representations [vec2vec]

Strong Platonic representation hypothesis: “The universal
latent structure of text representations can be learned and,
furthermore, harnessed to translate representations from one
space to another without any paired data or encoders.”



Is semantic structure universal?

Platonic Representation Hypothesis [Huh et al., 2024]:
“Neural networks, trained with different objectives on different data and modalities,
are converging to a shared statistical model of reality in their representation spaces.”



We conjecture that the S#rong Platonic Representation
Hypothesis 1s true with embeddings ot a// modalitzes. ..
we’re yet to show this!



Gameplan

Background: what are embeddings?
vecZ2text: How much information do embeddings leak?

vec2vec: Translating embeddings with no help

=~ > b =

Conclusion



L& €

So, are all AI models the same?

Fach encoder we tested reduced to vec2vec’s universal latent space: old,
new, big, small, different architectures, different dimensions, and different

training recipe S.



& ©

Yet, each encoder has vastly different performancel!

Interpretation: FEach encoder is a lens onto the Platonic structure of
semantics—some lenses capture the world in sharper focus, others in
blurrier or more distorted form, but they seem to observe the same reality.




Ad astra per aspera

More stable translation methods
* GANSs are brittle and finicky

More modalities: images, audio, ...
Translate and invert encrypted embeddings
Translate internal representations of LLL.Ms
Translate across languages

Characterize the universal geometry of meaning?




Tech

Scientists Have
Reported a

Breakthrough in
Understanding Whale
Language

By Jordan Pearson December 7, 2023, 11:19am E‘a I ‘
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Text Embeddings Reveal (Almost) As Much As Text

John X. Morris, Volodymyr Kuleshov, Vitaly Shmatikov, Alexander M. Rush
Department of Computer Science
Cornell University

Harnessing the Universal Geometry of Embeddings

Rishi Jha Collin Zhang Vitaly Shmatikov  John X, Morris
Department of Computer Science
Cornell University



QUESTIONS?

Replers celestial geometry of
Platonic solids
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