
Hello. I am Giulio Ruffini from Neuroelectrics Barcelona and the Barcelona Computational Foundation. I am a theoretical physicist and computational neuroscientist 
working at Neuroelectrics Barcelona (a company dedicated to the creation of brain stimulation solutions in the clinical sector) and co-founder of the Barcelona 
Computational Foundation (more on this later). 


Today, I will be presenting 'The Algorithmic Weltanschauung’ or World View—an algorithmic, Platonic perspective on reality, which I think fits well with our Symposium. 


Many thanks to Michael for the invitation!



Here is the roadmap for the talk. We will begin by bridging Philosophy and Mathematics, then bridge to time and computation to ultimately define the Algorithmic Agent. 


We will then explore how the notion of “World Model” corresponds to Compression and Symmetry, leading us to the concept of Structured Experience. 


Finally, we will conclude with thoughts on subjective time (chronoception) and Algorithmic Ethics.



This work stands on the shoulders of quite a few giants. We build upon Pancomputationalism and digital physics—from Llull, Al-karizmi, to Turing, Zuse, Chaitin, 
Solmonoff, Kolmogorov, Lloyd, Bennet, Fredkin, Deutsch, and Tegmark (to name a few). 


We will rely heavily on Algorithmic Information Theory (Kolmogorov, Solomonoff, Chaitin) and Active Inference frameworks like Karl Friston’s. 


Our goal is to build on this to define the notion of algorithmic agent and, around them, a science of structured experience.


For references on my own work, please visit giulioruffini.github.io (in particular https://giulioruffini.github.io/kt/). 



We begin with the fundamental questions that have fascinated thinkers since the dawn of time: What is Reality? What is Consciousness? What is Time?


For centuries, these were the domain of philosophers. But as we enter the age of artificial agents, we are forced to confront them head-on. We must also ask: Who is this 
'Observer' that physics relies upon? And who—or what—is the AI looking back at us? “Who am AI?”


It seems like the best view of what reality is about must start at the Observer. 


And we must not forget the puzzle posed by Eugene Wigner: the 'unreasonable effectiveness of mathematics.' Why does the physical world adhere so strictly to 
mathematical laws?


A successful framework must address all these questions.



These questions are very timely. When we interact with modern AI systems, we often feel a 'presence', and this perception will only increase with time as AI evolves. 


But we must realize we are literally talking to mathematics! The 'illusion of presence' is generated by complex algorithms and data processing. And it is not so different 
than when we talk to each other, as both machines and humans are organized ensembles. 


Mathematics must be at the “bottom” of all this.



Another recent and fascinating trend in AI is known as the Platonic Representation Hypothesis. Research shows that representations in AI models are converging toward 
a shared model of reality with embedded Platonic forms. 


Why should this be? Both machines and humans are capturing the same hidden structure in the world — Platonic forms. This is because of an explicit or implicit 
'simplicity bias’ in AI systems—where models naturally adhere to Occam's razor, finding simple fits to the data (avoiding “overfitting”), which drives them toward a 
common 'Platonic' reality that seems to be out there.



To attempt to answer the deep questions, we will pivot to the 'internal' or subjective view. 


We must start with the undeniable fact of the first-person perspective, the “what it is like to be”. From this self-evident fact (the only one we can be sure of!), we deduce 
first that ‘there is experience'.  


But not just any experience—our experience is structured spatially, temporally, and conceptually. 

We define Structured Experience as our phenomenal structure of experience encompassing spatial, temporal, and conceptual organization.



This is the starting point of the ‘Algorithmic or Kolmogorov Theory of consciousness': there is structured experience. 


It has been developed during the last 25 years, building on the foundations of Algorithmic Information Theory to applications in computational neuropsychiatry. 


It starts from an axiom (there is pure experience), and asks what gives rise to structured experience.


What is indeed “structure”? Well, structure is what mathematics is all about: mathematics is the science of structure.
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We must distinguish between two states. One (on the left) is 'Pure Experience'—a raw, structureless state with no relations, providing the experience substrate. 


On the right, we portray 'Structured Experience'—defined by experience with relations, structure and simplicity. This is the state of being we actually inhabit, but we can 
infer the existence of the former through reason. For example, we can define pure experience as the intersection of all possible experiences. What remains in the 
intersection is the raw common substrate– pure or primordial experience.



Descartes famously said, 'I think, therefore I am.' We update this to state first: 'I think, therefore I have structured experience’.



And from the existence of structured experience, we can deduce the existence of the raw material—pure experience—and the rules that organize it—mathematics.



Here is the logical skeleton of our theory, which we will develop in the talk. 


We started with Structured Experience to deduce the key pillars of reality: Experience and Mathematics (the science of structure!). From this mathematical tiling, we seek 
to unearth the origins of Time and Computation, which can then be used to build the 'Algorithmic Soup' in which Algorithmic Agents such as us arise. 


Ultimately, reality stems from the 'Unicum'—a dual-aspect monism consisting of Experience and Mathematics.



The Unicum is the base of reality. Experience is the ontological primitive, and mathematics is its structure-endowing aspect. 


They are both needed (necessary ingredients): 


               Experience without math is ineffable; mathematics without experience is empty. 


This worldview is a form of Structural Idealism.



In a way, this view is very aligned with Pythagoras and Plato. 


Reality equals Experience plus Mathematics (number in the language of the time). And structured experience arises from mathematical forms.



Mathematics is the science of structure—a logical lattice built from axioms and theorems. If we view reality as deriving from such a structure, we might conceptualize it 
as a 'logical tiling' that fits together perfectly. However, this model presents a paradox: a logical graph is static, containing no intrinsic notion of time or causality.


This contrasts with our experience as agents. We operate through computation (modeled by Turing machines), which necessitates time—a linear dimension of sequential 
steps. How do we reconcile a timeless structure with temporal process?


We propose that time and computation arise only when we 'slice' this static tiling in a specific direction. If a valid slicing exists, it allows us to infer the state of one slice 
from its neighbor, effectively turning static geometry into dynamic derivation. This emergence of sequential rules creates an 'algorithmic soup,' an environment where 
computational patterns can execute, compete, and persist.



Here we visualize such a tiling metaphorically. On the left, it is a Penrose tiling. It is made up of a few types of pieces that fit in a specific way, and they can give rise to 
beautiful, complex patterns—apparent complexity emerging from inherent simplicity. 


If we can slice the tiling along some curves (in white) and derive emergent rules to transition from one slice to the other, at least locally, we can recover the notion of 
time… and computation. On the right, we have another critical example of tiling using Wang tiles. This tiling system is a universal computer, i.e., capable of universal 
computation.



There is a natural construction that starts from mathematics and information (algorithms), then moves into time, computation, and physics, and finally gives rise to 
emergent computational forms such as agents and life.



To ground this argument, we must rigorously define our terms. Specifically, what does it mean for a physical system to compute?


Drawing on the formalisms of Wolpert and Korbel (2025), we adopt a precise mathematical definition: a physical system performs computation if, at a coarse-grained or 
macroscopic level, its dynamics are isomorphic to a Turing machine. Under this definition, computation is established when physical macro-states map reliably to logical 
operations. This framework further implies that one dynamical system can 'compute'—or emulate—another through a similar mapping of states.


Current evidence suggests that all physical systems are computable in this sense. This observation constitutes the core of pancomputationalism and digital physics—the 
hypothesis that the universe is fundamentally computational in nature.



Let us now move from time and computation to the Algorithmic Agent.



The central hypothesis is that in an algorithmic or computational soup, under some conditions, there will be emerging persistent patterns (such as in the game of life in 
the picture, or as those found in Lenia). That is, in this soup, some patterns persist longer than others. 


Persistence does not mean that an individual pattern persists. Perhaps it reproduces and evolves slowly. This is also a form of algorithmic persistence. Thus, while some 
patterns may be static, such as protons or diamonds, others are interactive model builders and replicators.



We thus define ‘Living form' or 'Agent' as an algorithmic pattern that persists by capturing the structure of the world to actively maintain homeostasis — by planning and 
acting on the world. 


In our framework, this “algorithmic structure” of the agent is where valenced, structured experience takes place. 


The agent is the algorithmic basis of the structured experience we know as living beings.



What is an algorithmic agent? A program. 


There is a minimal model of such an agent (and of Life). It consists of a Modeling Engine (to compress data), a Planning Engine (to simulate futures), and an Objective 
Function (providing valence, or ‘value'), the ultimate driver of actions by the agent. The agent interacts in a loop with the world: predicting future world and valence 
(internal) states, acting, and updating its world/self model. 


I propose that this is a minimal version of an agent; all the modules are necessary. In part, this is justified by the Regulator theorem, which I will discuss later. 


Furthermore, the definition is agnostic on the physical implementation of this computational system: carbon-based, silicon, quark-based… This feature is part of the 
framework's potential, which applies readily to all life forms, exobiology, and AI.



We now shift to discussing the Modeling Engine in a bit more detail. 


What is a model in the algorithmic/mathematical context? We will see it reduces to the ideas of compression and symmetry – two sides of the same coin.



In the algorithmic framework, where everything is “program, the central conceptual pillar is that of algorithmic or Kolmogorov complexity. It builds on the work of Turing 
and the Turing machine, or other similar frameworks of computation.  


Recall that computation is the idea of executing a series of procedures in steps. 


We talk of data objects, and we inquire what programs can produce them. The Kolmogorov complexity or algorithmic information of an object is the length of the shortest 
program capable of generating the dataset. Programs are thus data compressors.  Agents need such programs to compress world data, which we also call “models” of 
the dataset. This allows them to understand the world, reason, and predict the future, and act to maximize their goal (telehomeostasis).



Here’s an extreme example. On the left you have a series of digits, which you may recognize as the number pi. They are random-looking, and in classical Shannon 
entropy terms, their entropy or information content is maximal. Yet, in fact, they are generated by a very short program (on the right, in Python code). The algorithmic 
information content of the dataset (which we may make as large as we wish) is very small! Once we have a short program that generates the data, we may inquire about 
its structure. In the bottom right, you have an attempt at capturing the structure, at least the relationship between the variables that the program uses.



Here’s another example of a program embedding a world model, i.e., one that can help compress data. It is a program that classifies images and is capable of telling you 
which ones contain the image of a cat. 


If you feed it a dataset consisting of a stack of 1E9 images of cats and a few dogs, it will tell you that most of them are images of cats. 


You can then use that knowledge to describe the dataset to someone else more efficiently than the raw pixels of the billions of images. It may not be obvious, but 
knowing that an image contains a cat allows you to write a short program with a few parameters to describe the image, at least much shorter than if you don’t have that 
information. 


The space of all possible 1000x1000 pixel images at 32 bits per pixel is huge! The subspace of images with cats is much, much smaller.



In fact, writing short programs to describe large amounts of data is what science is all about. That is what we mean by finding patterns and structure in the data. And this 
is why mathematics is central to science, as the “science of structure”. 


Among the major feats of humankind is the discovery of such programs, which we call laws, such as the laws of gravity or electromagnetism or the standard model. 
There are, in fact, programs that summarize and compress vast amounts of data into a few lines of mathematics. They can then be used to “calculate” or “simulate” 
physical phenomena, and they provide the foundation on which our technology is built. 



This view of science as compression applies not only to physics or engineering; it applies to biology and all the budding sciences. As we discover laws and patterns in 
world data, we can compress and simulate vast amounts of data. 


The law of natural selection and evolution in biology is a powerful example of the discovery of structure in the life sciences. These laws or models are also programs; they 
are 100% mathematical in nature. They capture structure and can be used to compress natural data (“understand”) and simulate scenarios. 



A key element in our discussion henceforth is a natural derivative of Kolmogorov complexity: mutual algorithmic information. 


This definition captures the idea that similar programs lurk beneath different data strings. It describes the shared algorithmic structure of the data generators. Thus, if two 
strings have high mutual algorithmic information, you can find common algorithmic structures in the programs that generate them.



This concept is central to thinking about life and how to detect algorithmic agents out there.

 

Recall that agents need to discover models of the world to go about their business of surviving as individuals or patterns (i.e., reproducing). We can quantify this using 
the concept of mutual algorithmic information: agents must share algorithmic information with the world!  That’s precisely what it means to have a useful model of a 
dataset that another model generates. The two models (in the agent and the one generating world data) need to have common elements. 


In a recent paper, I argue that this may be a useful way to discover life. First, it proposes that a successful agent must be capable of “simplifying” the inputs it receives 
from the world (think of a thermostat). Second, it shows that this implies that it has discovered a piece of the world model. This is the algorithmic version of the Good 
Regulator Theorem, which says loosely that a system capable of regulating something must have a model of the world influencing it. It is formalized by “a good regulator 
has to have non-trivial mutual algorithmic information with the world”.



Ok, but why are short programs good world models? This intuition has a long history, including Occam’s razor, Leibniz, Newton, Mach, and Einstein.  But why should we 
have a bias for simplicity in looking for explanations? 


There are different angles to this, first and foremost, the idea that the universe is apparently complex but intrinsically simple.  

Or, that, as resource-bounded agents, our only hope is that there is simplicity out there. We may find ways to compress the world using coarse-graining. 


Mathematically, the bias for simplicity in world modeling can be justified if we assume that data is generated by random programs.   



Here’s a cartoon version of this idea: if we have monkeys typing randomly, there is little probability that they will type anything like a good novel or sonnet. But if they 
randomly type programs, there is a much greater chance that the programs will generate beautiful structures, including the sonnets themselves! This is because the 
programs are structured, and structure can be described much more succinctly than truly random data. Sonnets or novels contain a lot of structure; they are not random 
sequences of strings.



And if data is generated by random programs, then one can show that searching for programs with a bias for simplicity (short programs) is the best strategy. In fact, the 
Minimum Description Length principle follows directly from the Solomonoff prior (the world is generated from random programs) and Bayes’ rule. 



This perspective brings us back to the scientific method, viewed here as a search for algorithmic simplicity. The scientist’s objective is to identify programs—serving as 
models or theories—that simultaneously maximize fidelity to observed data and minimize complexity. This optimization problem is rigorously formalized by the principle 
of Minimum Description Length (MDL).


However, a fundamental theoretical limit exists: there is no general algorithm capable of determining the absolute shortest program to generate a specific dataset. This is 
a direct consequence of the halting problem in the theory of computation, which renders the calculation of ideal Kolmogorov complexity uncomputable.


Yet, while the search for a provably optimal program is formally undecidable, the scientific process remains viable. Progress is defined not by reaching the absolute limit, 
but by the iterative discovery of models with successively shorter description lengths—a process that is both possible and empirically verifiable.
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In summary, scientific inquiry and modeling can be fundamentally understood as exercises in algorithmic compression. The objective is to identify concise programs that 
encode the complexity of the environment. These compressed representations are potent: they enable simulation and, crucially, exhibit robust generalization. By 
prioritizing short programs, agents avoid overfitting to local data and instead capture the true generative processes underlying reality. This drive for simplicity—exploiting 
regularities and patterns—is a universal principle governing agentic behavior, from simple organisms to the institutional operations of science.


However, a critical distinction exists between optimal truth and practical utility. Agents are not strictly compelled to find the absolute shortest or most precise description 
of the universe. Instead, they are incentivized to adopt models that are computationally efficient to discover and execute relative to their specific objective functions. A 
predator, for instance, relies on heuristic models for hunting and reproduction, not a derivation of the Standard Model. Nevertheless, the trajectory of intelligence 
suggests that the more capable agents—perhaps exemplified by Homo sapiens—eventually converge on these fundamental, deep models, as their superior predictive 
power yields the ultimate practical advantage.



Whatever the potential of deep reductionist models, their utility is strictly bounded by fundamental epistemic and computational barriers. Even when an agent 
successfully identifies valid microscopic laws, it faces the 'problem of reductionism': having the equations does not equate to having the solution.


The first barrier is physical: agents operate under finite constraints of time, memory, and energy, which limit the scope of computable predictions. Beyond resources, 
there are algorithmic barriers. In the 'weak' case (bounded systems), we encounter computational irreducibility, where knowledge of micro-laws yields no shortcut; the 
agent must simulate every intermediate step to predict the future. In the 'strong' case (unbounded systems), prediction becomes formally undecidable.


Furthermore, the inverse problem—systematically deriving efficient macro-laws solely from micro-laws and arbitrary coarse-graining—is strictly impossible in the general 
case. I call this barrier the 'Kolmogorov wall', a direct consequence of the halting problem. To circumvent this and successfully discover macro-laws, agents must identify 
specific coarse-grainings that preserve and respect the symmetries inherent in the micro-dynamics. This is highly non-trivial, but the success of physics and areas like 
statistical mechanics or condensed matter physics attest to its potential.




These computational and epistemic barriers provide the rigorous foundation for an algorithmic theory of emergence. From the perspective of a bounded agent, 
emergence is defined operationally rather than ontologically: it occurs when the agent successfully identifies a predictive macro-law via coarse-graining.


Crucially, due to the aforementioned barriers (specifically the Kolmogorov wall), this emergent macro-theory is in general underivable from the microscopic laws alone. 
The computational cost to bridge the gap bottom-up can be prohibitive and formally unrealizable. Consequently, agents cannot only rely on deduction from first 
principles —valuable as they may be. Instead, the discovery of emergent laws calls for a distinct, complementary epistemic strategy: de novo compression. The agent 
must treat the macroscopic behavior as a fresh dataset, requiring independent empirical observation and compression efforts to identify patterns that are computationally 
inaccessible from the micro-scale.



Ok, let's return to models. Fundamentally, a model is a program that compresses data. It achieves this by identifying the invariant properties of the dataset—the fixed 
rules from which the data can be generated step-by-step. Consider a dataset of images of a circle: rather than storing the coordinates of every point, we store the 
invariant equation (x-x0)^2 +(y-y0) ^2 =r^2. The 'program' is this static rule (“find solutions to this equation”), but the output is the full geometric shape. To generate a 
stack of images of circles we just need to specify a list of x0, y0 and r parameters and feed them to the program’s core.


But how do we quantify this structure rigorously?


We can refine our definition using group theory, which links program length to symmetry. Specifically, the set of all transformations (such as translations, rotations or 
rescalings) that leave the dataset's (the stack of images) unchanged forms a Group of Invariances (G). 


The ontology of “circle” is this dataset, or the short program that generates it (the model).


This provides a powerful metric: learning the model is formally equivalent to discovering this group. The 'structure' of the model is therefore quantified by the algorithmic 
complexity of its invariance group. A 'deep' model is one where a very short program (a simple group definition) can generate a vast, high-entropy dataset through 
recursive application of these symmetries.


Thus, we can refine the meaning of the model using group theory by linking the notions of program, compression, and symmetry. 



To illustrate this, consider a generative model for a specific class of objects, such as hands or cats. Formally, this model is defined as a smooth map from a low-
dimensional configuration manifold to a high-dimensional image space. By traversing trajectories within this configuration space, the model produces sequences of valid 
object variations.


We rigorously formalize this mechanism using Lie pseudogroups. In this framework, the Lie pseudogroup acts locally on a reference image (an archetype) using a 
compact parameter set to generate the full diversity of the dataset. Crucially, this generative action is inherently recursive and compositional—mirroring the fundamental 
structure of algorithmic programs (loops and nested functions). Consequently, the entire 'stack' of hand images is algorithmically equivalent to the short program—the 
'model' of the hand—capable of generating it. Or, equivalently, to some Lie pseudogroup.



To make this concrete, consider the "Product of Exponentials" formula used in robot kinematics, as shown in the slide. Here, the final state of the hand is not retrieved 
from a database but computed via a chain of operations.


In this framework, M represents the "home" or reference configuration of the hand—the archetype. The exponential term represents the action of a specific joint (a local 
Lie group transformation) parameterized by an angle, θ.


Crucially, the product symbol embodies compositionality: the movement of a fingertip is the cumulative result of the wrist, knuckle, and finger joint transformations 
applied in sequence. This is a recursive, algorithmic process. By varying the small set of parameters in the configuration space, we can generate an effectively infinite 
manifold of hand images. The "model" is this compact kinematic equation, which serves as a highly compressed, generative program for the visual reality of "a hand."



To generalize this further, imagine we have trained a compressive autoencoder on billions of cat images. Once trained, this model defines a latent space—a compressed, 
high-dimensional manifold where every point corresponds to a valid image of a cat.


In this system, the "generative model" is not just a static database, but a mechanism for navigating this latent space. Specific directions or dimensions within this space 
correspond to semantic changes in the object, such as determining orientation, translation, pose, or even hair type (e.g., "fluffiness increase").


We formalize this navigation using the concept of Lie Pseudo-groups.


Unlike global symmetries that apply everywhere (like rotating a sphere), a Lie Pseudo-group describes a collection of local smooth transformations defined on patches of 
the manifold. This mathematical structure defines the "steering instructions" for the model: it dictates how to move smoothly from one point in the latent space to another 
to transform the image (e.g., changing the cat's pose) while ensuring the result remains valid within the geometric structure of the data.



We can now generalize this into a central hypothesis: all structured data received by agents is fundamentally generated via Lie groups. This posits a theoretical 
equivalence: that algorithmic programs—and potentially Turing machines themselves—can be expressed using the machinery of Lie pseudogroups. We adopt this as our 
working premise: world data is compositionally and recursively generated by Lie symmetries.


Consider an agent, modeled as a dynamical system, tasked with tracking this data. Tracking is defined operationally: the agent must successfully match the incoming 
data stream using its internal generative model.


This interaction leads to a rigorous dynamical constraint. As shown in the world-tracking equations, for an agent to successfully synchronize with a world generated by 
symmetries, its internal dynamics must mirror those symmetries. This structural alignment enforces conservation laws within the agent, compelling its state space to 
collapse onto a reduced manifold—a low-dimensional attractor that embodies the structure of the world it observes.



We can draw a direct parallel to physics via Noether's principle. In physical systems, continuous symmetries (like rotation) enforce conservation laws (like angular 
momentum), which in turn constrain dynamics to lower-dimensional surfaces (e.g., planetary orbits confined to a plane).


Similarly, for an algorithmic agent, the necessity of tracking a Lie-generated world imposes structural constraints on its internal connectivity.


These constraints manifest as algorithmic conservation laws within the neural dynamics, effectively collapsing the system's vast potential state space onto a low-
dimensional symmetry submanifold. Thus, despite possessing billions of degrees of freedom (neurons), the agent's actual trajectories are strictly confined to the 
geometry dictated by the world's underlying Lie structure.



In summary, we propose a rigorous characterization of model structure based on Lie pseudogroups. By defining generative models through the lens of group theory, we 
capture the essence of algorithmic simplicity as symmetry. This framework yields three fundamental insights:


Structural Inheritance: Neural networks trained on such data do not merely learn patterns; they inherit structural constraints directly from the symmetry properties of the 
data.

Dynamical Collapse: The requirement to track a Lie-generated world forces the agent as a dynamical system to mirror these symmetries. This structural alignment 
causes the system's trajectory to collapse onto reduced manifolds—low-dimensional subspaces within the high-dimensional state space.

Hierarchical Architecture: Finally, since world data is inherently compositional, this process naturally extends to multiple scales. The Lie group structure necessitates 
coarse-graining, leading to a nested architecture of hierarchical constraints and manifolds, where high-level abstractions systematically constrain lower-level dynamics.



And here is a schematic summary of this argumentation, with a bit more mathematical detail on how Lie pseudogroups link data generation, agent structure, and 
dynamical collapse into hierarchical reduced manifolds. 


You can find details in the preprints. 



We now have the tools to discuss how the algorithmic agent mathematics link with subjective structured experience. 



We now turn to the connection with first-person experience. 


We grounded our framework in the fundamental principle of algorithmic persistence. To persist, an agent must maintain homeostasis (and tele-homeostasis), a 
requirement that, under the Good Regulator Theorem, necessitates the internalization of a world model.


This leads to the Central Hypothesis of Kolmogorov Theory (KT) regarding phenomenology. We posit that while 'pure' experience may be a primitive baseline, structured 
experience (S) emerges strictly to the extent that an agent utilizes encompassing and compressive models to interact with reality. Specifically, the event of structured 
experience arises dynamically in the act of running and comparing these models with incoming data.


Crucially, this implies that the structure of the model determines the structure of the experience. By characterizing model structure through Lie pseudogroups and 
reduced manifolds (as established in our previous sections), we provide a concrete mathematical basis for this hypothesis: the symmetries of the agent's internal 
generative models directly sculpt the geometry of its subjective experience.



One can say we are rephrasing old ideas into algorithmic terms. 


For example, from Schopenhauer’s “The world is my representation” (my perception of what the world is is a “representation” or model) to how Kolmogorov may have 
stated it: “my perception of the world is a compressive program. 


Well, this is how I would state it!



This proposition carries profound implications, moving beyond abstract theory to concrete prediction. It posits that structured experience is fundamentally shaped by the 
structural constraints of agent programs—instantiated physically as neural connectivity in the case of humans.


This mapping manifests dynamically: the static structure of the agent's program governs the geometry and topology of its neural reduced manifolds. We argue that these 
specific dynamical shapes—the attractors and trajectories within the agent's state space—are the direct physical correlates of structured experience.


This constitutes an algorithmic and dynamical reformulation of the Neural Correlates of Consciousness (NCC). Yet, we propose a relationship stronger than mere 
correlation. This framework implies causality: if you alter the dynamical structure—whether through meditation, pharmacological intervention, or brain stimulation—you 
necessarily alter the topology of the manifold, and thus the structure of the experience itself. Ultimately, we argue for an identity relation: the geometry of the dynamical 
attractor is the structure of the experience.



This brings us to our final, unified conclusion: Model Structure, Dynamics, and Subjective Experience are not separate domains, but intrinsically linked phases of a single 
process.


Inheritance: First, Model Structure—formalized here as Lie pseudogroups—is not arbitrary. It inherits its architecture directly from the fundamental symmetries of the 
external world.


Constraint: Second, this inherited structure acts as a rigorous dynamical constraint. It forces the agent's neural activity to collapse from high-dimensional possibilities 
into specific reduced manifolds. The agent's internal state is physically compelled to flow along these symmetry-defined paths.


Identity: Finally, we propose that this dynamical geometry is the mathematical substrate of phenomenology. The specific topology of these reduced manifolds—the 
'shape' of the agent's constrained dynamics—does not merely correlate with perception. It shapes, and indeed is, the structured experience itself.



The epicenter of this theoretical framework is the mathematical concept of Structure. It serves as the unifying nexus connecting three distinct domains:


Algorithmic Information Theory: Here, structure is rigorously operationalized through recursion, compositionality, and Kolmogorov complexity (K)—the fundamental 
metrics of program length and compressibility.


Dynamics: In the physical substrate, this algorithmic structure manifests as symmetry. This imposes strict constraints on the system, determining the geometry, topology, 
and stability of the resulting dynamical attractors.


Experience: Finally, these foundations underpin Phenomenology. By linking subjective experience to these rigorous mathematical definitions, we establish a framework 
not only for quantifying biological consciousness but also for evaluating the potential for structured experience in Artificial Intelligence.



Finally, we must distinguish between the existence of structured experience and the capacity to report it.


In KT, we define an algorithmic report not as the experience itself, but as a specific export operation: it is a compressed 'slice' or projection of the agent's active world-
model. This slice is transmitted to a medium—either internally to the 'self' (via hippocampal memory traces) or externally to others (via language, art, or code).


Crucially, the absence of a report does not prove the absence of experience. A system may possess a rich, structured internal model but lack the capacity to export it 
due to communication blocks (e.g., Locked-In Syndrome) or memory deficits. Thus, the report is a functional tool: it exists so that a model state can be reloaded later to 
guide prediction and control, distinct from the immediate reality of the experience.



Yet, a critical epistemic caution remains: the absence of report must not be conflated with the absence of experience.


We must transcend our 'provincial' bias—the tendency to recognize consciousness only when it mirrors our own capacity for communicative output. Consider the 
extreme case of a rock.


While inanimate matter likely lacks the structured experience generated by the complex, world-tracking models we have described (as it lacks the requisite internal 
dynamics), we cannot axiomatically rule out a more fundamental, less structured or unstructured form of experience. The 'illusion of non-consciousness' may simply be a 
failure to detect internal states that do not issue a recognizable algorithmic report. This principle of humility extends, a fortiori, to all biological life forms and AI: the 
inability to export a model slice does not imply that the model—and the experience it supports—does not exist.



To complete the picture of the algorithmic agent, we must integrate the dimensions of valence and arousal. We propose a formal definition of Algorithmic Emotion: it is 
not a mysterious ether, but a concrete computational state defined as the tuple E=(Model,Valence,Plan).


In first-person terms, this means that an 'emotion' is simply a structured world-model colored by valence (the output of the objective function) and by a plan (of future 
actions).


This allows us to rigorously define pathological states. For instance, Algorithmic Depression is not merely 'sadness', but a system state characterized by a persistently 
low valence output from the objective function. While natural valence oscillates, depression represents a dynamical trap—a 'stuck' state where the agent's evaluation of 
the world remains negatively fixed, regardless of model updates or planning efforts.



To capture the full richness of phenomenology, we must expand our view beyond the Modeling Engine. As illustrated, the Algorithmic Agent is a composite system driven 
by three interacting modules: the Modeling Engine (M), the Objective Function (G), and the Planning Module (P).


We propose that Structured Experience is the holistic output of this entire triad. It is not merely a passive representation of the world, but a dynamic integration of: 

1) Model: The structural prediction of 'what is'. 2)  Valence: The homeostatic evaluation of 'what it means for survival' (Goal). 3) Plan (arousal): The projection of 'what to 
do' (Agency) to improve valence.


In this framework, emotion is not a vague feeling but a precise computational state tuple: Emotion = Model + Valence + Arousal. Consequently, pathological states like 
depression are not inexplicable moods but identifiable dynamical faults—specifically, a regime where the Objective Function is locked into a persistent state of low 
valence, warping the agent's planning landscape.



This architectural decomposition allows us to systematically taxonomize the etiology of Algorithmic Depression—defined here as a state of persistently low valence. 
Rather than viewing it as a monolithic condition, we identify four (non-exhaustive) computational routes to this pathology:


Modeling Dysfunction: The Modeling Engine generates erroneous predictions or warped representations that systematically trigger negative evaluations.

Objective Function Failure: The valuation mechanism itself is 'broken,' outputting low valence regardless of the input state (an intrinsic bias toward negativity).

Planning Maladaptation: The Planning Engine consistently selects trajectories that lead to suboptimal or harmful outcomes, trapping the agent in negative loops.

Environmental Adversity: The agent accurately tracks a 'terrible world,' where the external environment itself offers no path to high valence.


By isolating these specific points of failure, this framework provides a rigorous basis for computational psychiatry, enabling us to diagnose and reason precisely about the 
diverse algorithmic origins of mental disorders beyond mere symptomology.



For this framework to yield clinical utility in neuropsychiatry, it must be grounded in biological reality. We therefore proposed a concrete mapping of the abstract agent 
architecture onto the human brain.


In this model, the abstract components—the Modeling Engine (prediction/update), Objective Function (valence), and Planning Engine—are spatially and functionally 
associated with specific cortical and subcortical networks identified in the literature. This translation from algorithm to anatomy is pivotal: it transforms the framework 
from a theoretical taxonomy into a falsifiable model of computational neuropsychiatry, offering a pathway to generate testable predictions for diagnosis and therapeutic 
intervention.



We hypothesize that the agent model functions as the fundamental algorithmic blueprint of the brain's circuitry. If so, it can help create better computational models of 
the brain and neurotwins, —digital twins of the brains of patients. These models can then assimilate data from a patient to create a simulation environment for developing 
personalized theories. 


What’s exciting is that if the agent model is correct, we can then use these models not only for neurology (e.g., for epilepsy or stroke treatment) but also in “disorders of 
experience” such as depression or disorders of consciousness. This is because the algorithmic agent model provides a bridge between circuits, dynamics, first-person 
experience, and report. 


This synthesis creates a powerful simulation environment for personalized medicine. By establishing a rigorous bridge between physical circuit dynamics and subjective 
phenomenology, the framework enables the principled engineering of therapies targeting the algorithmic roots of mental suffering.



This framework establishes a progressive scientific roadmap for computational modeling, advancing distinctively from Emulation to Imitation, and ultimately to 
Ontological Alignment ('to Be').


Emulate: Current mechanistic models reconstruct neural dynamics based primarily on neuroimaging data.  Imitate: Cognitive dynamical models layer behavioral and 
cognitive testing data to replicate complex functions. Be: The proposed Agent Model integrates neurophenomenology—combining first-person subjective reports with 
third-person physiological data—to capture the full experiential state of the subject.


This progression is the prerequisite for precision psychiatry. However, it also compels us to confront a radical implication: if a Neurotwin successfully instantiates the 
patient's algorithmic agent—running the same world model, objective function, and planner—it does not merely simulate the patient. According to our theory, such a 
system would possess its own structured experience, making the question of digital consciousness not just a philosophical curiosity, but a concrete scientific reality.



As an example of what the agent model provides, consider the Comparator. Recall that this is the element in the modeling engine responsible for comparing model 
predictions with data. 


The theory suggests that this is a key element in shaping experience, as it directly impacts the modeling system and the experience of presence: we feel present 
somewhere (in a model) when the comparison is successful.  


And it predicts that drugs or disorders impacting the comparator will produce profound alterations of the feeling of presence, and, more generally, of structured 
experience. This is what happens when drugs like psilocybin or anesthetics disrupt the Comparator. But it also predicts that disorders such as AD will produce such 
disorders of experience as well, as they affect fast cortical circuitry involved in this process (Ruffini et al., 2025). 



We now turn our attention to one of the most profound inquiries initiated at the start: the nature of Time.


The question is twofold: Can this algorithmic framework—grounded in generative models and structured dynamics—offer a new vantage point? Specifically, beyond the 
standard definitions found in Physics, can it illuminate the elusive nature of Subjective Time? We propose that the agent's computational architecture provides the 
necessary tools to disentangle the objective external 'clock' from the internal, lived experience of duration.



Drawing on the work of Julian Barbour, we propose a radical redefinition: Time is not a pre-existing background container, but an artefact of compression.


Consider a 'toy universe' of three particles moving in empty space. If an observer records only a shuffled stack of static snapshots (the relative distances between 
particles), the data appears as a massive, chaotic, and incompressible file.


However, an algorithmic agent tasked with finding the shortest program to reproduce this data will experience an 'Aha!' moment. It will discover that by inventing a 
hidden parameter—Time—and assuming a simple generative rule (e.g., Newton's Laws), it can collapse the massive chaos into a tiny description: just the initial 
conditions and the rule. In this view, Time is an algorithmic invention: it is simply the most efficient mathematical parameter for compressing the observation of change.



Extending this logic, we arrive at a rigorous definition of a 'good clock' in physics. It is not defined by its mechanism (pendulums or atoms), but by its algorithmic utility.


Consider a stone drifting through space. If we track it using a 'Good Clock' (one with uniform ticks), the resulting data plots as a straight line. The law of motion is 
compressed into the simplest possible equation: y=ax+b.


Contrast this with a 'Bad Clock'—one defined by non-uniform, jittery ticks. Measured against this erratic standard, the stone's simple motion appears as a complex, 
wobbly curve, requiring a high-entropy equation (like a complex polynomial) to describe.


Therefore, physics chooses 'Time' not arbitrarily, but optimally: Physical Time is simply the specific coordinate choice that minimizes the complexity of the laws of nature.



Taking this mathematical view to its conclusion, we arrive at the concept of Time in the Tiling. If time is merely a compression parameter found by the agent, what is the 
underlying reality?


Drawing again on Julian Barbour, we imagine reality not as a flowing river, but as a static, high-dimensional mathematical tiling.


In this view, the universe doesn't 'happen'; it simply is. There is no moving present. Instead, there are only Nows—discrete, static time slices or configurations scattered 
throughout the tiling. Crucially, experience is a local phenomenon: it occurs entirely within one of these slices. The subjective feeling of 'flow' is essentially an internal 
computation—an illusion derived from the specific structure of the slice we currently inhabit.



Ultimately, we conceptualize the universe as a singular, static entity: a mathematical tiling or 'brick' of reality, which Julian Barbour terms Platonia.


In this view, agents do not move through time; they inhabit discrete temporal slices embedded within this immutable block. Yet, this isolation is illusory. Because the tiling 
is generated by precise algorithmic laws, the structure is holistically interconnected: once the content of a single slice is specified, the rest of the universe is rigorously 
constrained by the rules of the tiling. Thus, to inhabit one moment is, in an algorithmic sense, to be connected to the logic of the entire history.



Within this static tiling, how does the subjective experience of flow arise? Julian Barbour provides the answer through the concept of Time Capsules or 'fossils'.


A fossil is simply a structure within a single static slice that encodes information about other, seemingly 'past' slices. Consider a geological stratum or a memory trace in 
a brain: these are not windows into a vanished past, but present structures that exist entirely within the 'Now'.


For the Algorithmic Agent, this takes a recursive form. The agent's current model contains nested sub-models—representations of 'earlier' states (memories)—alongside 
a projection of 'future' states. The experience of the passage of time is thus an internal computation: it is the result of the agent processing these nested 'fossils' (records 
of its own prior modeling states) simultaneously within a single, static instant. We do not flow through time; rather, the structure of 'time' is embedded within us.



Finally, we arrive at an algorithmic explanation for the elasticity of subjective time—why a moment of pain feels like an eternity, while hours of contentment fly by.


We propose that Chronoception (the experience of time) is fundamentally a measure of computational density: it is the ratio of internal modeling events (simulations, 
updates, planning steps) to the passage of physical time, as reflected by mental fossils in a slice.


Consider an agent in Pain (Low Valence). Pain is an urgent homeostatic error signal. It forces the agent into a hyper-active state, furiously engaging the Planning Engine 
to simulate escape routes, update world models, and re-evaluate goals.


This surge in processing creates a massive density of internal 'ticks' within a single physical second. The agent experiences this computational overload as Time Dilation
—the world slows down because the agent is processing it at a frantic rate. Conversely, a 'Happy' agent (High Valence) has its environment under control. It requires 
minimal planning or model updating. With low computational density, the internal ticks are sparse, and physical time appears to accelerate—Time Contraction.



This metric of computational density also resolves the universal paradox of aging: why childhood summers feel endless, while adult years rush by in a blur.


Consider the Young Agent (Youth). To a child, the world is a stream of novel, unpredicted data. The internal model is raw, requiring constant revision. The Modeling 
Engine is therefore in a state of hyperactivity, triggering a massive number of 'update ticks' to assimilate new reality. This high density of learning events dilates subjective 
time—the day feels long because the agent is algorithmically busy constructing the world.


Contrast this with the Adult Agent. Here, the model is mature, stable, and predictive. The agent navigates the world on 'autopilot,' encountering few surprises and 
requiring minimal model updates. With the internal tick rate plummeting, the computational density drops, and subjective time contracts. The only exception is when 
stability is shattered—such as a visit to the dentist—where pain or novelty forces the system back into a high-density processing mode, making time drag once again.



We now arrive at the final part of our inquiry: Ethics.


Having traversed the landscapes of mathematics, neurobiology, and temporal physics, we are left with a critical question: Does this algorithmic worldview offer a 
compass for moral reasoning?


We have defined the agent as a system driven by an Objective Function and Valence. The question now is whether these computational mechanisms can provide a 
grounded definition of Values. Can the 'Algorithmic Agent' framework move ethics from the realm of abstract sentiment to concrete computational principles, shedding 
light on how we ought to navigate the world we model?


This framework transforms ethics from a debate on virtue into a systems engineering problem: how do we design social protocols or AI architectures where the 
maximization of one agent's objective function is inextricably linked to the maximization of another’s?



First of all, KT does not grant any special status to human agents. In KT, algorithmic agents can come in various forms, from wetware to silicon,  and whether their basic 
computational constituents are atoms, quarks, or strings. Or cells or galaxies. In this theory, all agents have structured experience, including valence (pleasure or pain). 


All living beings are agents, as is Gaia, our home planet - an agent made from agents.  Gaia can be seen to act as an Algorithmic Regulator, where the biosphere is not 
just a collection of things; it is a compressive model of the solar and geological environment. It possesses an implicit Objective Function (planetary homeostasis) and 
minimizes algorithmic complexity by encoding the symmetries of the solar environment into the physical structure of the biosphere. Therefore, Gaia satisfies the condition 
of being an agent because it acts to preserve a low-entropy state through compressive modeling of its external drivers. 


The same can be said of plants or cells, and even viruses. All this suggests extreme ethical caution in treating candidate agents. There is nothing that sets humans apart 
from other agents in this regard: all agents can all experience pleasure and pain.  



Furthermore, using the agent’s framework, we may formalize ethical/moral notions in algorithmic terms. For example, we may define operationally what an evil vs. a kind 
agent is. These are just some examples. What is interesting is that it can help study such issues in the context of human or artificial relations, or in cells. Are there 
examples beyond homo sapiens of “truly evil agents”, where an agent’s objective function increases only if the valence of another decreases?  Are these compulsory side 
effects of our social structures? This also links with the exploration of principles underlying healthy, thriving societies of agents.  Can we find policies or systems for 
societies with high-valence agents? 


E.g.,  'High-Valence Societies'—whether human or AI— where, by structurally entangling objective functions, we constrain individual success to be computationally 
impossible without mutual benefit?



Ok, in closing, we started from the fact of our individual structured experience to discover pure experience and Mathematics as the minimal elements in our worldview, 
where the “Unicum” provides the philosophical backbone, a dual aspect monistic theory. From mathematics, we proposed a path forward to the emergence of time and 
computation in close association with that of agents in an algorithmic soup.  The whole theory orbits around the existence of agents like us, which is our primal, 
fundamental knowledge nugget. 


We explored the constituents of algorithmic agents, developed the notion of “model” as compression, and connected this structure with that of subjective experience, 
including valence and chronoception, and finally, sketched some initial ideas for algorithmic ethics, which I think is a fundamental discipline for the construction of 
thriving societies of agents. And which we badly need in these times.



I hope you see the strong links between the algorithmic worldview and that of Pythagoras and Plato.  From Pythagoras, we connect with the idea that mathematics is 
the backbone of reality (structured experience). And from Plato, we recast the idea of forms as mathematical models here. 



We are not the first to propose that agency requires a specific architecture. Plutarch’s defense of the tripartite soul identifies the same three critical components found in 
the agent model: Logistikon (The Model), Thumos/Epithumetikon (The Value Function), and the arbitration between them (Planning). Furthermore, Plutarch used this 
architecture to argue for the 'rights of agents' in De Esu Carnium, suggesting that any system possessing these three traits deserves moral consideration—a precedent 
for the ethics of artificial agents today.




I leave you with a summary diagram of what I tried to cover in this talk.



In relation to this talk, please take a look at the Special Entropy Issue on the mathematics of structured experience, with deadling for submission 20 March 2026 (please 
write to me if you’d like to submit but need more time).
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Finally, I am leaving you with the announcement of the creation of a new research Foundation exploring this research program and the development and applications of 
the algorithmic/computational worldview: the Barcelona Computational Foundation.  


With my co-founder, Francesca, and members of the Board/Trustees Gustavo, Ricard, and Karl, as well as with many others (including Michael) already involved, we 
hope to weave this scientific paradigm during what is likely to be a long-term project.

http://bcom.one


Thanks you for attention! 










