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Synthetic	
Developmental	

Biology:	

Life	as	it	could	be

Artificial	and	
Unconventional		
Intelligence:	

Mind	as	it	could	be

Extract	
Biological	
encodings

Develop	new	
non-neuromorphic	
architectures	for	

Intelligence

Embodied Minds:  engineering diverse intelligence

• goal: build tools to enable detection, communication, and
ethical interaction with diverse intelligences

• model system: cell collectives navigating morphospace
• applications: regenerative medicine, synmorpho, AI/ALIFE(c)
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Impedance Match Between Tools and What You Can See

If you want to study minds, use high-agency tools
wheeler	1979

Carl	Jung
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graphic. Here, an arrow from one variable to another indicates a conditional probability 

distribution of the latter given the former. 

 

Figure 1. The active sampling cycle. This graphic illustrates the basic idea behind this paper. Anal-

ogous with action–perception cycles of the sort found in biological systems, it shows reciprocal in-

teractions between the process of sampling data (in biology, through acting upon the world to solicit 

new sensations) and drawing inferences about these data (akin to perceptual inference). 

Careful data selection is especially important when we consider the problems asso-

ciated with very large datasets of the sort that are now ubiquitous in machine learning 

and artificial intelligence settings. Computations with such datasets can be costly in terms 

of the hardware and computing power required, and their energy consumption raises im-

portant sustainability questions [9–12]. Taking inspiration from the approach evinced by 

natural selection—that of sequentially selecting small amounts of sensory data—may help 

to alleviate the costs associated with big-data analysis. 

To optimise data selection, we first need to identify an appropriate optimality crite-

rion. In what follows, we base this upon the idea of expected information gain—a measure 

used in optimisation of experimental design [13,14], feature selection [15], and accounts 

of biological information-seeking and curiosity-driven behaviour [16,17]. The idea behind 

this measure is that we form beliefs about hidden states or parameters in our model of 

how data are generated. Expected information gain is the degree to which we anticipate 

changing our beliefs under a given experimental design or data-sampling strategy. The 

implication is that optimisation of beliefs—and of data selection—work in tandem, as in 

Figure 1, and that both depend upon our model of how data are generated. 

In what follows, we consider the form this model, and therefore data-selection, might 

take in different settings, starting with abstract function-approximation and progressing 

to a more realistic example based upon the idea of an adaptive clinical trial. Before we 

move to these examples, we unpack the basic theory behind active data selection. We out-

line the basic principles behind Bayesian inference, the role of generative models, and the 

formulation of expected information gain. Our overall aim is to provide an intuitive over-

view of the principles that underwrite active data selection, and to illustrate this with 

some simple examples. 

2. Bayesian Inference, Generative Models, and Expected Information Gain 
Bayesian inference is the process of inverting a model of how data (y) are generated 

to obtain two things [18]. The first is the probability of observed data under our model—

sometimes referred to as marginal likelihood. This is a ubiquitous measure of the evidence 

our data affords the hypothesis expressed in our model. Second is the probability of the 

random variables (θ) in the model given our data—known as a posterior probability. 

Figure 1. The active sampling cycle. This graphic illustrates the basic idea behind this paper.
Analogous with action–perception cycles of the sort found in biological systems, it shows reciprocal
interactions between the process of sampling data (in biology, through acting upon the world to
solicit new sensations) and drawing inferences about these data (akin to perceptual inference).

Careful data selection is especially important when we consider the problems asso-
ciated with very large datasets of the sort that are now ubiquitous in machine learning
and artificial intelligence settings. Computations with such datasets can be costly in terms
of the hardware and computing power required, and their energy consumption raises
important sustainability questions [9–12]. Taking inspiration from the approach evinced by
natural selection—that of sequentially selecting small amounts of sensory data—may help
to alleviate the costs associated with big-data analysis.

To optimise data selection, we first need to identify an appropriate optimality criterion.
In what follows, we base this upon the idea of expected information gain—a measure
used in optimisation of experimental design [13,14], feature selection [15], and accounts of
biological information-seeking and curiosity-driven behaviour [16,17]. The idea behind
this measure is that we form beliefs about hidden states or parameters in our model of
how data are generated. Expected information gain is the degree to which we anticipate
changing our beliefs under a given experimental design or data-sampling strategy. The
implication is that optimisation of beliefs—and of data selection—work in tandem, as in
Figure 1, and that both depend upon our model of how data are generated.

In what follows, we consider the form this model, and therefore data-selection, might
take in different settings, starting with abstract function-approximation and progressing
to a more realistic example based upon the idea of an adaptive clinical trial. Before we
move to these examples, we unpack the basic theory behind active data selection. We
outline the basic principles behind Bayesian inference, the role of generative models, and
the formulation of expected information gain. Our overall aim is to provide an intuitive
overview of the principles that underwrite active data selection, and to illustrate this with
some simple examples.

2. Bayesian Inference, Generative Models, and Expected Information Gain

Bayesian inference is the process of inverting a model of how data (y) are generated
to obtain two things [18]. The first is the probability of observed data under our model—
sometimes referred to as marginal likelihood. This is a ubiquitous measure of the evidence
our data affords the hypothesis expressed in our model. Second is the probability of
the random variables (q) in the model given our data—known as a posterior probability.
These two things can be obtained by specifying the a priori plausible distributions of
model variables and the likelihood of generating patterns of data given the values those
variables might take. These prior and likelihood beliefs form our generative model. The
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Engineering with Diverse Substrates

Degree of agential material (from engineering perspective): 

how much do I not need to micromanage?  autonomy, communication 
how much of the task is engineering vs. reverse engineering? 
how much more do I get out that algorithm puts in?   intrinsic motivation, agendas 
what kind of tools (rewiring -> psychoanalysis) work best?(c)
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Engineering Agential Materials: 
Special Properties of Living Matter
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Biomedical Endgame: Anatomical Compiler

• Birth defects
• Traumatic injury
• Cancer
• Aging

how to control what 
cells will build?

Daniel Lobo

Why we need it: 

Anatomical compiler is NOT a 3D printer - it 
is a communications device (translator)

because of agential material of life
(c)
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Agential Material of Life

video by Charles Krebs

Lacrymaria = 1 cell
no brain
no nervous system

high competency
at cell-level
agendas

Lacrymaria olor Rene Descartes
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Nested Cognition, not Merely Structure

Jeremy Guay

each level of 
organization solves 
problems in its own 

space (morphospace, 
transcriptional space, 

physiological space, 3D 
behavioral space, etc.) 
using some of the same 
tricks, at various levels 

of sophistication

Multi-scale Competency 
Architecture
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Problem-solving in Diverse Spaces

Animal Position X

An
im

al
 P

os
iti

on
 Y

3D Space (behavior)

Transcriptional Space Morphospace Physiological Space
Huang, S.; Ernberg, I.; Kauffman, S., Semin Cell Dev Biol 2009, 20, (7), 869-76. 
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Time  

Amputation

Perfect Regeneration

Self-Repair - Anatomical Homeostasis

it stops when the correct large-
scale setpoint (target 

morphology) has been reached (c)
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Novel Forms of Life and Mind
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Messages from Hacker Reveal Flexibility:

Parasite hacks host to induce new anatomy (bio-prompting)(c)
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Exploring the Latent Space with New Embodiments: 
beyond evolutionarily-selected Setpoints

https://thoughtforms.life/symposium-on-the-platonic-space/

(c)
 M

ich
ae

l L
ev

in 
20

25

















“Endless Forms Most Beautiful”<—>ethical synthbiosis
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AI for Diverse Intelligence (and 
ALife, Bioengineering, 

biomedicine, etc. etc.) research: 
tools → colleagues
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Automating the Search for New Prompts 
and Behavior-Shaping Stimuli

discovery engine for communication, collaboration 
with agential materials(c)
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Temperature modulation

Electrical modulation

Vibrational modulation

Chemical modulation

Loose cell patterns? 

Electrical fieldCell movement

(Image from SCHEEPDOG paper)

Speeding/slowing development w/ temperature

w/o chemical w/ chemical

need better idea for this

exploring 
the 

space of 
prompts

Kam Bielawski

Boston Engineering
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“MomBot”

Introducing a new collaborator:  
an embodied AI scientist working in synmorpho
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Kam Bielawski 
(Bongard Lab, UVM)

Introducing a new collaborator:  
an embodied AI scientist working in synmorpho

Like us, it has multiple concurrent cognitive sub-modules in its mind, and parallel, nested effectors in the body(c)
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Introducing a new collaborator:  
an embodied AI scientist working in synmorpho

Kam Bielawski 
(Bongard Lab, UVM)

Infotaxis: it tries to do the most informative experiments to give it the most information based on priors(c)
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Multiscale Sensory-Behavior Loops 

overall loop: sense/manage Xenobot form and function

inner loop: 
sense 

liquid and 
manage 

movement 
of 

materials(c)
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Next Steps:

•Discovery engine - new Xenobots

•Add meta-curiosity: find new problems to solve, not just solutions

• Ask the Xenobots what they want - from instrumental learning of 
frog tissue to a hybrid system (we, MomBot, Xenobots) in which 
an agential material actively collaborates with its environment (the 
MomBot) to shape its embodied mind and their future evolution
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Future Impacts of this Approach:

•Useful synthetic living machines

•Robot science to crack 
morphogenetic code

• Tools to communicate with 
unconventional minds

Mombot
platform

human
scientist

cell
collective

intelligenceDiscovery automation →
Anatomical Compiler →
Communication to Alife/DI

• In-the-body repair
• Environmental cleanup
• Exploration

• Regenerative medicine - injury, 
birth defects, aging, cancer

• Bioengineering, synmorpho -> 
anatomical compiler

• Recognize diverse intelligences
• Communicate with novel embodied 

minds
• Be part of composite new systems
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“Endless Forms Most Beautiful”<—>ethical synthbiosis
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Main Points:
• Morgan’s Canon is an off-ramp for 

science and engineering; we cannot 
simply “skew low” for intelligence

•Symmetry between individual cognition 
and science:

• process of self- and world-discovery
• new perspectives on, and by, new 

minds

• Develop tools to 
• rigorously define kinds of minds on 

the spectrum of persuadability 
• communicate to them via interfaces
• develop new ethics for relating to 

radically different beings - 
synthbiosis

• AI/ALIFE + agential materials = future
(c)
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Post-docs and Staff Scientists:       
Douglas Blackiston - brain-body interface plasticity, Xenobots
Patrick McMillen - bioelectric basis of cell collective intelligence
Sam Kriegman - computational modeling of biorobotics
Vaibhav Pai - voltage gradients in eye/brain induction and repair
Tal Shomrat - planarian memory
Nestor Oviedo, Junji Morokuma - planarian bioelectric pattern memory
   

Ph.D. Students:
Sherry Aw - bioelectric eye induction
Fallon Durant - planarian bioelectric pattern memory
Gizem Gumuskaya, Nik Davey - Anthrobots

Undergraduate Students:
   Pranjal Srivastava, Ben G. Cooper, Hannah Lesser, Ben Semegran - Anthrobots
   Maya Emmons-Bell - planarian barium adaptation

Technical support:
   Rakela Colon, Jayati Mandal - lab management
   Erin Switzer - vertebrate animal husbandry
   Joan Lemire - molecular biology
   Marty Schwalm - engineering, and the LevinBot

Bongard Lab at UVM:    Josh Bongard,  Kam Bielawski
                                            Krishna Srinivasan, Shawn Beaulieu, 
                                            Piper Welch, Thomas Varley, Jeantine Lunshof

Blackiston Lab at Tufts: Douglas Blackiston and Tomas Gonzalez-Zugasti

Illustrations:    Jeremy Guay @ Peregrine Creative

Model systems:    frog, fish, human cells, animats, mice, and many others

Funding support:   CRREL, JTF, John Abele, DARPA, Paul G. Allen Frontiers Group, NIH, NSF
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Disclosures: Fauna Systems,  
                      Astonishing Labs

Heather Moyer, Mark Smithers & team

This material is based in part upon work supported by the Broad Agency Announcement Program and 
the  Cold  Regions  Research  and  Engineering  Laboratory  (ERDC-CRREL)  under  Contract  No. 
W913E524C0012.  Any  opinions,  findings  and  conclusions  or  recommendations  expressed  in  this 
material  are  those  of  the  author(s)  and  do  not  necessarily  reflect  the  views  of  the  Broad  Agency 
Announcement Program and ERDC-CRREL.(c)
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