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Observing convergence across many forms of intelligence

&

Controlling convergence to explain biology

Future Work: Optimizing for convergence




Representational similarities between Brains and Machines

[Han, Poggio, Cheung 2023]
[Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo 2014]



Representational similarities between Brains and Machines

[Han, Poggio, Cheung 2023]
[Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo 2014]



Representational Turing Test




Characterizing representations using kernels

Restrict our attention to vector embeddings

f: X —=R"

similar

Characterize a representation
iNn terms of its kernel

K- XxX—R
K(x;,z;)=( f(@), f(®))




Do models measure similarity in similar ways?
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Representational Turing Test
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-asy to tell Convolution apart from Attention

Similarity (CKA)
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Do different models represent the world in different ways?
Or are they somehow all becoming alike?



Do models measure similarity in similar ways?
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vision

<9

Zé/ision

ZXision

fvision

“Sunset over Glacier Point” —————————— fiext

“Yosemite valley”

“San Francisco during the California Gold Rush”

“A Boston Red Sox game at Fenway Park”

Wikipedia Image Text Dataset
[Srinivasan, Raman, Chen, Bendersky, Najork 2021]
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Do strong language models align better with vision models?

Sim ( Kyision , Krext)

Hypothesis B:
Better language models are better
vision models.

Hypothesis A:
Better language models overfit to
anguage.

Alignment to VISION

1 — bitsperbyte

performance
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Strong models converge in representation
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There's a large space of work that has shown
similar results supporting our hypothesis

Published as a conference paper at ICLR 2023

RELATIVE REPRESENTATIONS ENABLE
ZERO-SHOT LATENT SPACE COMMUNICATION

Luca Moschellal:* Valentino Maiorcal*

Marco Fumero

NCE

ymetry L

. La Jolla, CA; receiv

mf' OPEN ACCESS ]

Check for
updates

Explanatory models in neuroscience:

- Constraint-based intelligibility

Rosa Cao and Daniel Yamins*

1S3
LETTERS TO NATURE
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graphs), tasks
GCNss. transf cortex can be characterized as being spatially localized,

Department of Psychology, Uris Hall, Cornell University, ithaca,
New York 14853, USA
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Whny is this happenmg?

e It's all about the world

[Plato 375 BC]
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Platonic representation hypothesis

o—
Different neural networks
I Y are converging toward the
\ — %iiii:iiié‘? el same way of representing
B’i ---------- the world (same kernel).
Jing l frext

[Huh*, Cheung*, Wang*, Isola* 2024]
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How many words is a picture worth?

ﬁ 5 Wordsl "ITlluminated escalators in indoor mall."

"Illuminated escalators in a lush indoor

10 words mall with greenery and polished tiles."”

<

"Illuminated escalators in a vibrant
indoor mall with lush greenery, polished
tiles, and tropical plants, surrounded

by stone columns and recessed lighting.'

20 words

"An indoor shopping mall with three
illuminated escalators, surrounded by
lush greenery and polished colored
tiles, featuring a man ascending one
escalator and various shops and plants
on the upper level."

30 words

DCI Dataset [Urbanek*, Bordes* et al. 2023]
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How many words is a picture worth?

0.22 - |
@ ImageNet21K

0.20 1 @~ MAE
- -€@)- DINOV2
O 0181 -@- cLip
dp)
'S 16 12 C_IP(|12Kft)__‘
O
4+
= 014- /
D
= 012 -
C
=) 0.10 -
= .

0.08 -

006 | | | ]

ﬁS wordsl le words 9 9
20 words
30 words

[Huh*, Cheung*, Wang*, Isola* 2024]
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DYNAMIC REFLECTIONS: PROBING VIDEO REPRE-
SENTATIONS WITH TEXT ALIGNMENT

Tyler Zhu'* Tengda Han* Leonidas Guibas* Viorica Pitraucean? Maks Ovsjanikov?
Princeton University! Google DeepMind*

/

| _ @ Video
‘ video < ) embedding
y | model @ space

/ Video Eml_)edding V; - /

I\
. mutual &-NN

\ V

) 4 )

. large @ Text
: 1 —— | cap. vee | cap. | .. | — |1 — . -
caption 0 Pio 2 a;ilge @ @ :g;zzddmg
Sample 1n,. captions and concatenate =L _
Captions C i € / Text Embeddlng Cz \_ )
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Alignment Scores (VaTeX
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How many captions is a video worth?

Model
- \/[deOMAEV2 Huge
e DINOV2 Giant

# Frames (Plot 2)
—4— 48 frames
4= 16 frames
-4 - 4 frames
ok - 2 frames
-+ 1 frames

Number of Captions

[Zhu et al. 2025]
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Propning what language models know

By embedding text

17" M M 44 t t
‘ Sunset over Glacier Point B— 27 I

By generating text
Jtext Jtext 27
o J } / } I
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INnfluence on mModel representation

By embedding text

By generating text
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“You can just do things.”

—Sam Altman, CEO of OpenAl @

@ | for th
You can Just ask Tor things.
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Chain-of-Thought Prompting

Zero-shot

@ A juggler can juggle 16 balls. Half of the balls are golf balQ
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

- /

Zero-shot-CoT

ﬁ): A juggler can juggle 16 balls. Half of the balls are golf ballsm
and half of the golf balls are blue. How many blue golf balls are
there?

A:

- : /

[Kojima et al. 2022]
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Asking the model to Imagine: {caption}.

O Embed (z)

A Generate (z,)

Vision (DINOv2)

S 0.14-
O
O
N
= 0.12 -
O
=
<

0.08 -

0.6B 1.7B AB 14B 32B
Model size

[Wang, Isola, Cheung* 2025]



What happens when you ask a language model to
imagine senses it never experienced?

‘ A @ : .
Imagine what it would Imagine what 1t would

like to {caption}. like to {caption}.
\_ \_

y




Sensory Prompting

“Awaiting a pitch:
batter, catcher, and
umpire in baseball” |

[ ™
@ Language Model
- 2 _J
IMAGINE SEEING .  * e
0& IMAGINE IMAGI.NE HEARING
ie
Space of kernels :' -

e — -

~

.

-
—_— —_—
—_— e - =

[Wang, Isola, Cheung 2025]
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Imagine what it would look like to see
{caption}
N

4 )

..Ineed to visualize a baseball field. The batter
stands at the home plate, right? They're holding
the bat, probably in a ready position, feet
shoulder-width apart. Their bocly

‘anguage should show they're focused...

L J

ter,

=l Imagine what it would sound like to hear

{caption}

~

catchq..There's the general ambient noise of the

stadium: crowd murmurs, maybe some
distant cheers or chatter. The sound of players

moving, like cleats scraping on the dirt, gloves
being adjusted...

)A

©



Sensory Embedding vs Sensory Generation

NnO cue SEE cue HEAR cue
Vision (DINOv2) Audio (BEATS)
0.10 -
o 0.16 -
(%CB 0.09 -
(-
(D)
= 0.08 -
o 0.12 §
= @@
0.07 -
0.10 -

Embed (z,) Embed (z,)



How many spoken words is a picture worth?

—e— N0 CUEe SEE cue HEAR cue
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Redirecting Sensory Cues

O

4 N
Please rewrite the following text to describe
what the scene would sound like

rather than how it - {text}

N X\

4 N

The scene with anticipation, the
only sounds the

uncderdfootandthe occasiendl {
of the cro'v'v'u M the distanCe ATerse
2\ T T9S 1N et |.

(O

-
Please rewrite the following text to

describe what the scene would look like

“rather than how it - {text}
\_
p
—p-
)




Alignment Score

Redirecting sensory cues
preserves modality-specific alignment

= nocue mlmm SEE cue m@mm HEAR cue = = redirected cue

0.16 -

0.14 -

0.12 -

O
o
|

Vision (b|NOV2)



Removing sensory references

-~

explicit sensory grounding: {text}

o

Please rewrite the following text by removing all sensory-specific
words or descriptions (e.g., related to sound, sight, smell, touch,
taste), and replace them with neutral, non-sensory words. The
result should preserve the event or action described but remove

~

RN

-

)

VA

..l need to a baseball fidda?! he batter
stands at the home plate, right? They're

, probably in a ready position, feet ( -> ( gf" ' 'gl' S%
shoulder-width apart. Their

pd y

should show they're focused...

©

S |

J

——

S LTRT2SY pbs&

..l need to picture a setting related to a baseball
ecifically near the area where the batter
ne person is positioned to take their
ibly preparing for an action...

~

J

J

©



Use of sensory language strengthens
modality-specific representations

[ no cue [ SEE cue 1 HEAR cue O original /\ ablated

0.17 - O
(),
5 '
9 0.16 -
% A

0.15 - O
c "V @ I
2 A
< 0.14 - L

A

Vision (DINOv2)



Alignment Score

o 0
I >

O
N

®

0.10

Alignment is higher in larger models

© SEE cue © HEAR cue
Vision (DINOv2) Audio (BEATSs)

0.10 -

@ @ 5
5 @ @ 0008{)“) o ©

0.07 -
0.6B 1.7B 4B 8B 14B 32B 0.6B 1.7B 4B 8B 14B 32B
Model size



What about senses humans don’'t nave?

X-ray Crystallography

https://emcore.ucsf.edu/krios-g2-cryo-tem

https://msg.ucst.edu/rigaku-ru-200



What about senses humans don’'t nave?




P10 Sensory Prompting

/
SEQUENCE :

o

KKAVINGEQIRSISDLHQTLKKELALPEYYGENLDALWDCL TGWV

EYPLVLEWRQFEQSKQLTENGAESVLQVFREAKAEGCDITIILS
{
® ¢

v

RIBONUCLEASE SA COM

I~

™ 4

Provide a thorough summary of {protein name}.
Include its gene name, protein family, molecular
weight, known structural domains, function in the
cell, binding sites, any known interactions or
oathways it participates in.

\

Okay, | need to provide a thorough summary of the
RIBONUCLEASE SA COMPLEX WITH BARSTAR. Let me start by
recalling what | know about these proteins.

First, the gene names. | remember that RNase SA is from the
bacterium Staphylococcus aureus. The gene might be named
rnsa, but | should verify that. Barstar is the inhibitor of RNase SA,
SO its gene might be bar...

~

J

©



P10 Sensory Prompting

~— 0.18 -
0.16 -
0.14 -
0.12 -
0.10 -

0.08 -

Alignment to Protein Model

100 200 300 400 500
Number of Generated Tokens

Qwen3 0.6B



P10 Sensory Prompting

~— 0.18 -
0.16 -

0.14 -

0.12 -

0.10 -

0.08 -

Alignment to Protein Model

100 200 300 400 500
Number of Generated Tokens

—&— Qwen3 32B —&— Qwen3 14B —&— Qwen3 8B —®— Qwen3 4B Qwen3 1.7B Qwen3 0.6B



You can just ask for perception

- .y
s” .~

Sengery prompts steer LLMs toward

modality i pecific representations.
. e'hsor‘wment"improves as LLMs

* ¢
------

()




Representational alignment predicts downstream performance

9
O
N
O

0.60 -

0.60 -

0.99 -

0.90 -

0.45 -

0.40 -

0.35 -

Performance on Hellaswa

OSO ! I I I I 1 |
0.14 0.16 0.18 0.20 0.27 0.24 0.26

Alignment to VISION (DINOv2)

49
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With the convergence of artificial and biological systems,
what questions about biology can we answer?

Si M ( in-vivo 7 in-silico ) — T l



Why do we have a fovea?




What is a fovea?

PERIPHERY

FOVEA

[Van Essen and Anderson 1995]
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13 T4

[Perry, Oehler, Cowey 1984]



Model of a Retinal Ganglion Cell
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iIN-silico
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Attention with Saccades

+ 4
+
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S 2 2B 2 2B 2B 2 2 2B 2B 2
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Cvolution of a fovea

i Low Acuity ¥ High Acuity

NNNNN

+
+
+
+
+
+
+
+
+
+
+

LA 2B 2 25 2B 2% 25 2 2B 2B 4
L A0 2 2B 25 2 2B 2 2 2B 2 2
LR 2 I Ik Ik I 2 2 2 2 4
L IR R I IR R I B I I B 2
L 2 I B I L 2 R 2 R B 2
L A0 2B 2 25 2 2% 25 2 2B 2B 4
L A0 2B 2B 25 2 25 25 2B 2B 2B 2
T O ¢ O 4 4 ¢ 99 ¢ §
L IR I B JBE R I 2 2 2 2 4
L R I I B R B B B N B 2

[Cheung, Weiss, Olshausen 2017]
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What it eyes could zoom?

o o° 000. 0,00 o
0 0 9 o0%%00° O
RNt
S ~.. e ®O

[Cheung, Weiss, Olshausen 2017]
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How to use a fovea

e ooooocooocoooo“ _ﬂ.r.

® ® goo
) o0 __0_000 .. o

o
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.0.....’".. . .
. “.oo“..“ .
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Dataset 1

What it the data were different?

03




Translation Only (Dataset 1)

0.25

0.20

0.15

o
[}
o

Sampling Interval

0.12

0.10

0.08

Kernel Standard Deviation

0 | | | | | |
0.0 0.2 04 06 08 10 12 14
Distance from Center (Eccentricity)

o4



Building a ‘What if’ machine for vision

Photoreceptor

65



Cvolution of an “Al-ball”

Eye #1 Eye #2 Eye #3

006



Reinforcement Learning Environments

Name: detection

Total Timesteps: 12
Step: 1

Cumulative Reward: 0.02

FPS: 10.96

agent: agent
Action: 0.125, 0.000, -0.350

FOY: ('45.00' '45.00"
Res: (20, 20)

Num Eyes: 3

67



Reinforcement Learning Environments

@& Detection @ Tracking

Name: navigation

Total Timesteps: 12
Step: 1

Cumulative Reward: -0.03

FPS:9.73

agent: agent
Action: 0.123, 0.025, -0.250

FOY: ('5.00', '5.00"
Res: (1, 1)
Num Eyes: 15

@ Navigation

Name: detection

Total Timesteps: 12
otep: 1

Cumulative Reward: 0.02

FPS5:10.96

agent: agent
Action: 0.125, 0.000, -0.350

FOW: ('45.00", '45.00")
Res: (20, 20)

Num Eyes: 3

63

Name: exp_tracking1
Total Timesteps: 12
otep: 1

Cumulative Reward: 0.0

FPS:11.85

agent: agent
Action: 0.000, 0.000, 0.366

FOW: ('45.00', '45.00")
Res: (20, 20)
Num Eyes: 3




What if the aata goals were different?

@&» Navigation @& Detection

Generation: 0
Num Eyes: (1, 1)
Resolution: (1, 1)

Generation: 0
Num Eves: (1, 1)

Resolution: (1. 1)
Lon Range: | 43.60', '43.60')

Lon Range: ' 43.17,'43.17"]

[Tiwary*, Young*, Klinghoffer, Tasneem, Dave, Poggio, Nilsson, Cheung**, Raskar** 2025]
y g g 99 g
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What if the aata goals were different?

Compound Camera

70



Navigation at Generation O

Name: navigation_ewvolved_init
Total Timesteps: 12

Step: 1

Cumulative Reward: 0.0

FPS: 10.62

agent: agent
Action: 0.000, 0,000, -1.000

FOW:("10.00' "10.00")
Res: (1, 1)

Num Eyes: i

71



Navigation at Generation 50

Name: navigation_evolvedZ

Total Timesteps: 4428

Step: 1
Cumulative Reward: 0.0

FPS: 105.86

agent: agent
Action: 0.000, 0.000, -1.000

FOV: ("10.00', "10.00")
Res: (4, 4)
Num Eyes: 10

(2



-mergence of Pinhole Eyes

Pinhole Eye Agent Image
v o J

Agent Image

o,

Yl

2
'/,,"‘m

0 Open Eye Agent Image
! J

iy
.\\\\\\&‘
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MV/SIS

mergence of Pinhole

P3S0|2 %) 9zIS |IdNnd

1

1

75

Generations

4



Pinhole Eyes: Acuity at the cost of brightness

lgs



Pupil Size (% closed)

0.7

0.6

0.5

0.4

0.3

What it eyes could bend light?

25

50

75

Generations

/0

100

125




What it eyes could bend light?

Focused Eye Agent Image

\ ’

e Pinhole Eye Agent Image
vV J

Unfocused Eye Agent Image

v/

Optics Introduced
—

—
N

Optics
Introduced

00

o ©

Agent Image

Image Quality
(Sharpness x Throughput)

AN

©

o

Agent Image 0 25 50 /5 100 125
Generation

’r’



What it the brain became larger?

&» Detection

100 '
S *+._ Diminishing returns
1] e
'
©
|_
10-2

(Cycles Per Degree)
107 108 10° 1010

Number of Parameters

/3



L

6

anguage

s 1011

- 1010

10°

108

107

10°

Reducible Loss

10°° 10~4 107 10° 10° 104

Line color denotes model size

[Henighan*, Kaplan*, Katz* et al. 2020] 29



SIM

Scaling Laws

& Detection

. Language
10 | 6 1 -
‘ 1011
1
I . 1010
\ 4
pES -10°
1 0—1 “a,
\‘\\ : 108
< ~3
\'\ \\\:\ 107
\
- 2 -
AL YR L L [ =2 57.C—0048 " 106
102 L= (7.31-10-%). NO7H . , l , . , s
B - 10~ 104 102 100 10 104
0.0 0.2 0.4 i
CPD

7 8 9 10 . .
10 10 10 10 Line color denotes model size

Number of Parameters

K. Tiwary*, A. Young”, T. Klinghoffer, Z. Tasneem, A. Dave, T. Poggio, D.-E. Nilsson
B. Cheung**, R. Raskar**
“What if Eye...? Computationally Recreating Vision Evolution”
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Convolution Attention

Sim ﬁ} 1

Y. Han, T. Poggio, B. Cheung
“System identification of neural systems: If we got it right, would we know?”

31



SIM

Vision

Language

%

A red sphere next
to a blue cone.

M. Huh*, B. Cheung*, T. Wang?, P. Isola*
“The Platonic Representation Hypothesis”
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IN-Vivo INn-silico

+
+
+
+
+
+
+
+
+
+
+

L0 20 20 2 25 25 2% 25 25 2B 4
L0 2B 2B 25 25 25 2B 25 2B 2 2
L 2 2 I 2 2 2 2 2B 2% 2% 4

B. Cheung, E.A. Weiss, B.A. Olshausen
“‘Emergence of foveal image sampling from learning to attend in visual scenes”

83



Future Work

What is alignment?

A consistent representation across all medatities: projections of the real world.

What is science?
The search for a consistent representation of the real world.

What it we optimized for alignment to find consistent representations?

34
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s hypothesis for eyes

Plato

Quelle: Deutsche Fotothek
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s my hypothesis aligned with my observation?

Lokt

-mission Theory Intromission Theory

BRI |ogm e el (R < .

i - > -
S ) ML - -
' .

i s S 'f_-_',.p[G A XXIL
meminine Yohilant Semidaes
Conpus 1ical

S %

L OrTac o

CTHESAVRYS

U f l.‘".‘;\]').f '
: .r’ f; A

e A g . N
Nibri fepetimnuncprimim
editi.

-'-'—- .-o-o—?v.‘p -~y -

By _;‘t{;ﬁ EN b DE CREPFSCPLIS

e 35?5:«1.23@?-&!3- 49 Hypothesis

LIBRI X |

Emmimess (Representation)

l. ..: ‘ - ; . > ; .A. -
AR R A FE o B X1 CO R1SMEBRD. \ J
5 T2 P o & ad N . - 3 -
- ‘ ;l. . \\ p

NS SN K

R

I
1‘;', .

s ‘ﬂi
" I

R

inml

v )
— ) ST

Experiment:

'L
»
-
.
'

2 Pinhole Camera

. BASILERAE, - “ gt
(EPISCOPIOS. M D LXXIb. SR

W x g L

{5 ;' ',.‘ 24 L N
¥ - ,-q‘ﬁ'_ ‘,"" viw .k A Ny "N
‘ ] v

v

Quelle: Deutsche Fotothek

[Alhazen 1021]

86



Quelle: D

s my hypothesis aligned with my observation?
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solves vision

solves language
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limited brain size
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't you can embed it, you can align it!
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Alignment corresponds to better performance in self consistent domains
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Alignment corresponds to better performance in self consistent domains

Math
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Alignment to VISION (DINOv2)
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Alignment measures when hypotheses are not consistent

Alignment Score

99



'-----------.

Math reasoning is an alignment loop
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rrPlease add a single pair of parentheses to the incorrect equation:
2 * 1 -5+4 + 4+ 3+ 2+ 2 =22
to make the equation true. y
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What if Eye...? Computationally Recreating Vision

Representation Alignment for ‘soft’ verification

Evolution

Kushagra Tiwary*!
3

Akshat Dave!, Tomaso Poggio?,

Dan-Eric Nilsson

Ramesh Raskar**!

4

, Aaron Young*!, Zaid Tasneem?, Tzofi Klinghoffer!:,
, Brian Cheung

Abstract

Vision systems in nature show remarkable diversity, from simple light-sensitive patches to
complex camera eyes with lenses [1, 2]. While natural selection has produced these eyes
through countless mutations over millions of years, they represent just one set of realized
evolutionary paths [3, 4]. Testing hypotheses about how environmental pressures shaped eye
evolution remains challenging since we cannot experimentally isolate individual factors [5].
Computational evolution offers a way to systematically explore alternative trajectories [6—10)].
Here we show how environmental demands drive three fundamental aspects of visual evo-
lution through an artificial evolution framework that co-evolves both physical eye structure
and neural processing in embodied agents. First, we demonstrate computational evidence
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Alignment Enables:

Al for Science

Science for Al
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.’ﬂi You can ask questions

cheungb@mit.edu

UGSE in 2026
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