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Preface:
• Intersection of biology, computer science, cognitive science: what are 

minds and how do embodied minds operate and scale in the physical 
world?

disciplines are distinct

the substrate is continuous
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Beyond Bio-chauvinism and Anthropomorphism - 

A Radical Ecology of Minds
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“Endless Forms Most Beautiful”   <—>   synthbiosis
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Preface:

• “Developmental biologists don’t concern themselves with the mind-body problem.”     

               — anonymous reviewer

• I will not be talking about directed (non-random) mutations.(c)
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Main Points:

• Origins:

• Where do the properties of novel beings come from?

• What kickstarts the process before differential 

replication?


• Conclusion and future

Functional Agency Ratchet (FAR)

• Genotype -> Phenotype map is intelligent 
- a problem-solving, creative process.


• Evolving an agential material is different - 
major implications for evolution.

(same latent space that e comes from) 

Autonomy

all the way down 
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Outline:

• Genotype -> Phenotype map is intelligent - a problem-
solving, creative process.


• Diverse Intelligence = continuum

• Morphogenesis as improvisation with genome as 

prompt

need to dissolve assumptions that 
intelligence, problem-solving, etc. are things 

that brainy animals do in 3D space 
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Axis of Persuadability: 

an Engineering Take on a Continuum of Agency
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Collective Intelligence of Cells: 

Competency in Diverse Spaces

Animal Position X

An
im

al
 P

os
iti

on
 Y

3D Space (behavior)

Transcriptional Space Morphospace Physiological Space
Huang, S.; Ernberg, I.; Kauffman, S., Semin Cell Dev Biol 2009, 20, (7), 869-76. Cervera, J., Levin, M., and Mafe, S., (2021), BioSystems, 209:104511
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Nested Cognition in Biology

Jeremy Guay

each level of 
organization solves 
problems in its own 

space (morphospace, 
transcriptional space, 

physiological space, 3D 
behavioral space, etc.) 
using some of the same 
bag of tricks, of various 
levels of sophistication

Multi-scale Competency

Architecture
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Evolution Pivots Its Navigational 
Competencies into new Spaces
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Evolutionary Implications
• Hierarchical control = search the nicer space of behavior-shaping 

inducements, rewards, signals, incentives, inputs, etc. not the chaotic, 
rugged space of microstates
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Outline:

• Genotype -> Phenotype map is intelligent - a problem-
solving, creative process.


• Diverse Intelligence = continuum

• Morphogenesis as improvisation with genome as 

prompt

Enormous distance and divergence between 
genotype and form/function but NOT just 
complexity, polygenicity, or degeneracy!


Deep parallel between cognitive science and 
developmental biology
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“Intelligence = ability to reach the same goal by         

                        different means.”


- William James

Hypothesis: morphogenesis is a collective intelligence, exerting its 
behavioral competencies in anatomical morphospace

• Homeostasis: goal-directed activity

• Homeostasis2: same ends by different means - context sensitivity

• Hierarchical, non-local control

• Hackability (software, not just hardware)

• Learning

• Creative problem-solving toward default goals

• Novel beings, novel goals: never give up(c)
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Same anatomy, from different starting states

Splitting an embryo in half

makes 2 normal embryos

• get to the same outcome

• despite perturbations

• from diverse starting positions

• via different paths

• stop when goal is achieved

(regulative) development = 
regeneration from 1 cell
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Time  

Amputation

Perfect 
Regeneration

Anatomical Homeostasis:

it stops when the correct 
large-scale setpoint (target 

morphology) has been 
reached 

• get to the same outcome (maintain set point)

• despite perturbations

• from diverse starting positions

• via different paths

• stop when goal is achieved

Anatomical 

homeostasis:(c)
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It’s not Just about Damage: Holistic Order

local order obeys global planAnatomical 

homeostasis:

Farinella-Ferruzza, Experientia, 1956 (15)

• get to the same outcome (maintain set point)

• despite non-local, large-scale perturbations

• top-down control of parts: align toward abstract goals 
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Complex Morphogenetic Behaviors

Triggered by Short Prompts

ion channel mRNA

targeted


to ventral or

posterior regions

can reprogram many

regions, even outside 

“competency zone”, into 
complete ectopic eye!

EYEgut

1. BIOE is instructive

2. modularity - not cell level, organ-

level subroutine call

3. higher-level prompt reveals 

higher tissue competency than 
Pax6 prompt


4. self-scaling of system to task

voltage-modified

cells

wild-type cells

recruited to ectopic lens!

Getty Images
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The Same Body can Store different 
Electrical Pattern Memories

Re-writing Anatomical Pattern Memory

The bioelectric pattern doesn’t indicate what the anatomy is now, it encodes the latent 
pattern memory that will guide anatomy if it is cut at a future time = counterfactual

Fallon Durant

bioelectric

pattern

middle-third

regenerates:

normal 

axial identity


gene expression

built anatomy

after cutting

control worms bioelectrically edited

normal anatomy
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Cut, and briefly perturb

bioelectric circuit

or, can force 
Vmem state back 

to normal

• Long-term stability

• Lability (rewritable)

• Latency (conditional recall)

• Discrete possible behaviors (1H v. 2H)

• Not genetic (and the only “mutant line”!)

weeks later,

cut in plain


water …
Keep 

trunk

weeks later,

cut in plain


water

Keep 

trunk

Basic properties of memory

Re-writing Pattern Memory to Create New, 
Permanent Bodyplan without Genetic Change

Nestor Oviedo
Junji Morokuma
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Hardwired Development, 

Genotype -> Phenotype?

White Oak Leaf - Photo by Chris Evans, 
River to River CWMA, Bugwood.org

This is what the oak genome does?
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Abstract
A critical aspect of evolution is the layer of developmental physiology that operates between the genotype and the anatomi-
cal phenotype. While much work has addressed the evolution of developmental mechanisms and the evolvability of specific 
genetic architectures with emergent complexity, one aspect has not been sufficiently explored: the implications of morpho-
genetic problem-solving competencies for the evolutionary process itself. The cells that evolution works with are not passive 
components: rather, they have numerous capabilities for behavior because they derive from ancestral unicellular organisms 
with rich repertoires. In multicellular organisms, these capabilities must be tamed, and can be exploited, by the evolution-
ary process. Specifically, biological structures have a multiscale competency architecture where cells, tissues, and organs 
exhibit regulative plasticity—the ability to adjust to perturbations such as external injury or internal modifications and still 
accomplish specific adaptive tasks across metabolic, transcriptional, physiological, and anatomical problem spaces. Here, I 
review examples illustrating how physiological circuits guiding cellular collective behavior impart computational properties 
to the agential material that serves as substrate for the evolutionary process. I then explore the ways in which the collective 
intelligence of cells during morphogenesis affect evolution, providing a new perspective on the evolutionary search process. 
This key feature of the physiological software of life helps explain the remarkable speed and robustness of biological evolu-
tion, and sheds new light on the relationship between genomes and functional anatomical phenotypes.

Keywords Embryogenesis · Regeneration · Competency · Intelligence · Problem-solving · Morphogenesis · Evolutionary

Introduction

The basic workhorse of evolutionary theory is the cycle 
between the genotype (the target of mutations) and the phe-
notype (that which selection acts upon). While many models 
and analyses focus on these key elements, another is often 
neglected: the physiological processes that underlie morpho-
genesis. This is the control layer that sits between the genomi-
cally specified cellular hardware (proteins) and the form and 
function that selection sees: anatomy and behavior (Fig. 1). In 
effect, the behavior of cellular collectives in morphogenesis 
is the software of the system—the functional outcomes of the 

molecular machines encoded by genomic information [1]. This 
is relevant not only for embryogenesis, which converts com-
pressed genomic information into a rich emergent set of large-
scale structures, but also for regeneration, metamorphosis, 
remodeling, and other processes which establish and modify 
growth and form. Much work has addressed the evolution of 
developmental mechanisms, the evolvability of specific archi-
tectures, and the emergent complexity of epigenesis [2–6]. 
Moreover, recent work has begun to emphasize the active, 
cybernetic, problem-solving capacities of this process beyond 
feedforward emergence [7–11] and explore ways in which evo-
lution increases the functional intelligence of cellular collec-
tives [12–14]. Here, I focus on the complementary side of the 
evolution–intelligence feedback loop. This is fundamentally 
distinct from earlier efforts in the adaptationist/selectionist 
paradigms, and emphasizes problem-solving, unconventional 
embodied agency, and creativity that are specifically not due 
to adaptation. I first overview the data that illustrate the func-
tional competencies of morphogenesis, casting multicellular 
growth and form as the behavior of a collective intelligence. I 

 * Michael Levin 
 michael.levin@tufts.edu
1 Allen Discovery Center at Tufts University, 200 Boston Ave. 
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Intelligent Materials can be Hacked:

Bio-prompting by wasp parasite
Biology exploits reprogrammable hardware
(c)
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Eye on Tail? No problem.

Ectopic 
eyes on 

tail provide 
vision!

Behavioral Testing Device

Brain dynamically adjusts 
behavioral programs


to accommodate different 
body architectures, no


lengthy adaptation needed!

no eyes

eye

Douglas Blackiston
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Changing the size of cells still enable large-scale structures to form, 
even if they have to utilize different molecular mechanisms =


top-down causation

newt

kidney

tubule

cross-

section

Fankhauser, 1945, J. Exp. Zool., 100(3): 445-455

• Beginner’s Mind approach to survival - can’t even count on your own parts, but you can count 
on change


• Creative, intelligent problem-solving - repurpose available tools to new circumstances

• Tail-eye tadpoles and galls (and Vmem-induced ectopic eyes) work because every instance of 

development is creative problem-solving

Creative Problem-solving in Morphospace
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Perspective

Self-Improvising Memory: A Perspective on Memories as
Agential, Dynamically Reinterpreting Cognitive Glue
Michael Levin

Department of Biology, Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600,
Medford, MA 02155-4243, USA; michael.levin@tufts.edu; Tel.: +1-617-627-6161

Abstract: Many studies on memory emphasize the material substrate and mechanisms by which data
can be stored and reliably read out. Here, I focus on complementary aspects: the need for agents to
dynamically reinterpret and modify memories to suit their ever-changing selves and environment.
Using examples from developmental biology, evolution, and synthetic bioengineering, in addition to
neuroscience, I propose that a perspective on memory as preserving salience, not fidelity, is applicable
to many phenomena on scales from cells to societies. Continuous commitment to creative, adaptive
confabulation, from the molecular to the behavioral levels, is the answer to the persistence paradox as
it applies to individuals and whole lineages. I also speculate that a substrate-independent, processual
view of life and mind suggests that memories, as patterns in the excitable medium of cognitive
systems, could be seen as active agents in the sense-making process. I explore a view of life as
a diverse set of embodied perspectives—nested agents who interpret each other’s and their own
past messages and actions as best as they can (polycomputation). This synthesis suggests unifying
symmetries across scales and disciplines, which is of relevance to research programs in Diverse
Intelligence and the engineering of novel embodied minds.

Keywords: basal cognition; diverse intelligence; memory; learning; morphogenesis

1. Introduction and Overview
“To live is to be other. It’s not even possible to feel, if one feels today what he felt yesterday.
To feel today what one felt yesterday is not to feel—it’s to remember today what was
felt yesterday, to be today’s living corpse of what yesterday was lived and lost. To erase
everything from the slate from one day to the next, to be new with each new morning,
in a perpetual revival of our emotional virginity—this, and only this, is worth being or
having, to be or have what we imperfectly are.”— Fernando Pessoa

There is a paradox which points out that if a species fails to change, it will die out, but
if it changes, it likewise ceases to exist. The same issue faces all of us: if we do not change,
learning and growth is impossible. If we do change, does not the current Self cease to exist,
in an important sense? This profound puzzle, which rests on pure logic—not contingent
facts of implementation or origin—highlights the deep symmetry of existential concerns
for agents existing at all scales, from subcellular organelles to evolutionary lineages1 . Thus,
it is also highly relevant to issues facing the engineering of novel intelligences and fields
from active matter research to AI and Artificial Life.

A solution to this problem has been suggested in the West as Process
Philosophy [10–12], and in the East as Buddhist and Indic conceptions of the no-Self
or the non-duality of the Self vs. the world [13]. The idea is to conceive of the Self2 as a
process, not a thing, and to consider snapshot Selves3 as low-dimensional projections of
the deeper reality that both exists and constantly changes. Here, I discuss how evolution
has beaten us to this solution, and how it is implemented across spatiotemporal scales.

Entropy 2024, 26, 481. https://doi.org/10.3390/e26060481 https://www.mdpi.com/journal/entropy

Algorithmic CreativeNow
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Morphogenesis and Beginner’s Mind:
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Genetics�

Opinion�

What� does� evolution� make?� Learning� in� living�
lineages� and� machines�

l�Benedikt� Hart 1�,2�,4� and�

1�Allen� Discovery� Center� at� Tufts�
University,� Medford,� MA,� USA�
2�Institute� for� Theoretical� Physics,�
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*Correspondence:�
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How� does� genomic� information� unfold,� to� give� rise� to� self-constructing� living� organ-
isms� with� problem-solving� capacities� at� all� levels� of� organization?� We� review� recent�
progress� that� unifies� work� in� developmental� genetics� and� machine� learning� (ML)� to�
understand� mapping� of� genes� to� traits.� We� emphasize� the� deep� symmetries�
between� evolution� and� learning,� which� cast� the� genome� as� instantiating� a� genera-
tive� model.� The� layer� of� physiological� computations� between� genotype� and� pheno-
type� provides� a� powerful� degree� of� plasticity� and� robustness,� not� merely� complexity�
and� indirect� mapping,� which� strongly� impacts� individual� and� evolutionary-scale�
dynamics.� Ideas� from� ML� and� neuroscience� now� provide� a� versatile,� quantitative�
formalism� for� understanding� what� evolution� learns� and� how� developmental� and�
regenerative� morphogenesis� interpret� the� deep� lessons� of� the� past� to� solve� new�
problems.� This� emerging� understanding� of� the� informational� architecture� of� living�
material� is� poised� to� impact� not� only� genetics� and� evolutionary� developmental� biol-
ogy� but� also� regenerative� medicine� and� synthetic� morphoengineering.�

Whence� the� endless� forms� most� beautiful?�
Living� forms� present� three� fundamental� challenges� to� our� understanding:� first,� they� self-assemble� –�
performing� all� of� the� decision-making� needed� to� construct� a� functional,� complex� body� while� the� com-
putational� material� itself� is� being� reorganized� on-the-fly.� Second,� they� reach� the� correct� target� mor-
phology� reliably,� utilizing� heredity� mechanisms� to� propagate� specific� patterns� of� form� and� behavior�
through� time.� Crucially,� third,� this� process� is� almost� never� hard-wired,� but� instead� offers� immense�
plasticity,� able� to� complete� morphogenetic� tasks� despite� perturbations� of� external� environment� and�
internal� components� [1].� This� capacity� to� navigate� the� morphospace� of� possible� anatomies,� to� pro-
duce� the� correct� final� pattern� in� the� face� of� novel� situations,� or� to� create� something� completely� different�
(never� before� seen� by� evolution)� but� nevertheless� coherent� and� adaptively� functional� [2],� is� an� example�
of� problem-solving� ability� in� a� high-dimensional� latent� space.� This� lynchpin� capacity� ties� together� fields�
of� evolutionary� developmental� biology,� non-equilibrium� thermodynamics,� computational� and� informa-
tion� science,� and� the� emerging� field� of� diverse� intelligence.� The� implications� of� understanding� the�
multiscale� behavior� of� the� active� matter� of� life� during� embryogenesis,� regeneration,� and� cancer� sup-
pression� range� across� biomedicine,� bioengineering,� robotics,� and� bio-inspired� artificial� intelligence�
(AI).� Central� to� this� set� of� questions� is� the� relationship� between� the� genetically� specified� hardware� in-
side� cells� and� the� resulting� physiological� software� that� produces� phenotypes� acted� upon� by� selection.�
Given� the� plasticity� and� context-sensitive� decision-making� of� the� all-important� morphogenetic� layer�
lying� between� genotype� and� phenotype,� what� are� useful� conceptual� frameworks� for� understanding�
what� genomes� actually� do� (or� encode),� on� evolutionary� and� ontogenic� timescales?�

A� new� perspective:� the� generative� genome�
Recent� work� integrating� developmental� biology� and� computer� science� has� provided� a� new� model�
of� how� genetic� information� is� encoded� and� decoded� during� evolution� and� embryogenesis.

480� Trends� in� Genetics,� June� 2025,� Vol.� 41,� No.� 6� https://doi.org/10.1016/j.tig.2025.04.002�

©� 2025� Published� by� Elsevier� Ltd.�

Highlights�
Biology� implements� a� multiscale� compe-
tency� architecture� (MCA),� where� compo-
nents� competently� navigate� problem�
domains� (e.g.,� metabolic,� physiological,�
transcriptional,� and� anatomical).�

Biological� subsystems� continuously�
shape� (hack)� each� other’s� behavior,� to-
ward� homeodynamic� goal� states� emerg-
ing� at� new� scales.�

The� genome� acts� as� a� generative� model,�
not� a� hardwired� algorithm� nor� a� blueprint,�
for� species-specific� form� and� function.�

A� bowtie� architecture� enables� evolution-
ary� lessons� of� the� past� to� be� generalized�
into� lineage� memory� engrams� which� are�
then� actively� decoded� (interpreted)� in�
ways� appropriate� to� default� or� novel� situ-
ations� by� the� morphogenetic� machinery.�

Fundamental� symmetries� across� evolu-
tion,� development,� and� behavior� involve�
learning� and� creative� problem-solving,�
which� can� be� modeled� by� machine�
learning� (ML)� concepts� such� as�
autoencoders� (AEs)� and� neural� cellular�
automata� (NCAs).

Trends in Genetics

(A) (A’)                                 (A’’)    (A’’’) 

(C) 

(D)                                                        (D’) 

(B) 

(E) 

TrendsTrends inin GeneticsGenetics 

Figure� 2.� Plasticity� of� the� interpretation� layer� between� genotype� and� phenotype.� An� acorn� (A)� contains� the� genome�
of� the� oak� tree,� and� results� in� a� very� consistent,� stereotypical� morphology� of� a� species-specific �leaf �(A’).� However,� with� prompts�
from� a� non-human� bioengineer,� such� as� a� wasp,� the� plant� cells� are� capable� of� making� a� round,� spiky,� red� gall� structure� [139]�
instead� of� the� normal� flat� green� one,� illustrating� the� plasticity� of� the� outcome� driven� by� the� normal� genome.� Animal�
development� also� features� remarkable� examples� of� plasticity,� in� the� context� of� problem-solving� that� involves� accommodating�
not� only� novel� aspects� of� the� external� environment� but� also� changes� in� internal� components.� In� newts� (B),� the� normal�
arrangement� of� eight� cells� that� create� the� kidney� tubule� changes� when� polyploidy� causes� the� size� of� cells� to� increase:� fewer�
cells� are� used� to� make� the� same� size� structure,� as� the� system� works� to� reach� the� same� anatomical� setpoint� despite� changes�
in� available� parts.� The� most� remarkable� thing� happens� when� cells� are� made� truly� huge,� in� which� case� cytoskeletal� bending� –�
a� different� mechanism� –� is� used� as� cells� bend� around� themselves� to� leave� a� lumen� in� the� middle� [140].� This� illustrates� how�
morphogenesis� is� not� a� hardwired� consequence� of� genetic� information,� but� instead� a� problem-solving� process� that�
navigates� anatomical� morphospace� using� its� genetic� affordances� as� needed� to� achieve� specific� anatomical� ends.� Because� of�
the� unreliable� material� of� life� (an� embryo� cannot� assume� how� much� genetic� information� it� will� have,� or� what� mutations� may�
have� occurred,� or� how� many� cells� it� will� have� [141],� etc.),� the� genetic� lessons� of� past� lineages� are� not� always� taken� literally�

(Figure� legend� continued� at� the� bottom� of� the� next� page.)
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cells� are� used� to� make� the� same� size� structure,� as� the� system� works� to� reach� the� same� anatomical� setpoint� despite� changes�
in� available� parts.� The� most� remarkable� thing� happens� when� cells� are� made� truly� huge,� in� which� case� cytoskeletal� bending� –�
a� different� mechanism� –� is� used� as� cells� bend� around� themselves� to� leave� a� lumen� in� the� middle� [140].� This� illustrates� how�
morphogenesis� is� not� a� hardwired� consequence� of� genetic� information,� but� instead� a� problem-solving� process� that�
navigates� anatomical� morphospace� using� its� genetic� affordances� as� needed� to� achieve� specific� anatomical� ends.� Because� of�
the� unreliable� material� of� life� (an� embryo� cannot� assume� how� much� genetic� information� it� will� have,� or� what� mutations� may�
have� occurred,� or� how� many� cells� it� will� have� [141],� etc.),� the� genetic� lessons� of� past� lineages� are� not� always� taken� literally�

(Figure� legend� continued� at� the� bottom� of� the� next� page.)
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Biology assumes the hardware is unreliable

Environment and your own parts will change, don’t over-train


Little allegiance to past Self’s meaning of engrams

Re-interpret on-the-fly - present/future is all that matters


Engram is highly compressed - creative remembering, not deduction

Unreliable hardware and improvisation are a feature, not a bug

Algorithmic CreativeNow
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Evolutionary Implications
• Hierarchical control = search the nicer space of inducements, rewards, 

signals, incentives, etc. not the chaotic space of microstates


• Competencies of modules smooths the evolutionary landscape and 
buffers negative effects of mutation, giving the process patience 
(improves evolvability)


• Competency hides genetic information from selection, resulting in 
intelligence ratchet: might all the work now be done by improving the IQ 
of the material, vs. micromanaging the hardware (genome)?
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Abstract: Biological genotypes do not code directly for phenotypes; developmental physiology is the
control layer that separates genomes from capacities ascertained by selection. A key aspect is cellular
competency, since cells are not passive materials but descendants of unicellular organisms with
complex context-sensitive behavioral capabilities. To probe the effects of different degrees of cellular
competency on evolutionary dynamics, we used an evolutionary simulation in the context of minimal
artificial embryogeny. Virtual embryos consisted of a single axis of positional information values
provided by cells’ ‘structural genes’, operated upon by an evolutionary cycle in which embryos’
fitness was proportional to monotonicity of the axial gradient. Evolutionary dynamics were evaluated
in two modes: hardwired development (genotype directly encodes phenotype), and a more realistic
mode in which cells interact prior to evaluation by the fitness function (“regulative” development).
We find that even minimal ability of cells with to improve their position in the embryo results in
better performance of the evolutionary search. Crucially, we observed that increasing the behavioral
competency masks the raw fitness encoded by structural genes, with selection favoring improvements
to its developmental problem-solving capacities over improvements to its structural genome. This
suggests the existence of a powerful ratchet mechanism: evolution progressively becomes locked in
to improvements in the intelligence of its agential substrate, with reduced pressure on the structural
genome. This kind of feedback loop in which evolution increasingly puts more effort into the
developmental software than perfecting the hardware explains the very puzzling divergence of
genome from anatomy in species like planaria. In addition, it identifies a possible driver for scaling
intelligence over evolutionary time, and suggests strategies for engineering novel systems in silico
and in bioengineering.

Keywords: artificial life; in silico; artificial embryogeny; evolutionary computation; development;
morphogenesis; basal cognition

1. Introduction

One critical aspect of real biology which is not always taken into account in evolution-
ary computation and theoretical biology efforts, is that the mapping between genotype and
phenotype is not direct [1–13]. Genes generally do not directly encode for structure and
function of the organism. Instead, it has become increasingly clear that developmental phys-
iology provides a critical layer of control that sits between genomes (on which mutation
operates) and anatomy (the phenotype which is the subject of selection). During develop-
ment, organisms emerge as the result of a complex set of interactions among cells, with
anatomical order and functionality being the result of cellular activities. While genomes
specify the cellular hardware (proteins), it is the software (cellular activity) studied by
developmental biologists that is ultimately responsible for the organism’s overall structure
and behavior [14–18].

The simple story of genomes determining anatomy is shown to be incomplete by
examples such as the highly regenerative planaria [19]: due to reproduction by fissioning
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“Chance favors the 
prepared mind” - how 
evolution makes use 
of random mutations 

in an agential 
medium!
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Maxing out the Unreliability of the Substrate

• Planaria that reproduce by fission+regeneration:

• Body mutations propagate to next generation

• Despite hundreds of millions of years of somatic inheritance,

• Regenerative pattern correct with 100% fidelity!
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Resistant to:


cancer

memory loss (tails regenerate memories) 


decomposition (no cell lines)

aging (immortal!)


mutations (no genetic or transgenic lines)


in spite of 

because of


very noisy genome (c)
 M

ich
ae

l L
ev

in



Evolutionary Implications
• Hierarchical control = search the nicer space of inducements, rewards, 

signals, incentives, etc. not the chaotic space of microstates


• Competencies of modules smooths the evolutionary landscape and 
buffers negative effects of mutation, giving the process patience 
(improves evolvability)


• Competency hides genetic information from selection, resulting in 
intelligence ratchet: might all the work now be done by improving the IQ 
of the material, vs. micromanaging the hardware (genome)?


• Evolution doesn’t just create solutions for specific environments 
(problems) - it creates problem-solving systems (because each 
multicellular Self has to identify borders, salient inputs, causally-potent 
outputs, etc. on the fly) - normal development, even without 
perturbations, is already a problem-solving process. 

The need to interpret anew makes evolution be faster and much more powerful
(c)
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Main Points:
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Early frog 
embryo assay for form 

and function

8 hours

 - die

- crawl off

- 2D cell layer

- …?

Rebooting Multicellularity: Xenobots

Douglas Blackiston
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Xenobot in a maze (still water, no flow):

1) it traverses maze,            2) rounds the corners without bumping into walls, and 
3) it makes a spontaneous decision to turn around without hitting anything.

1 mm

Douglas Blackiston
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Kinematic Replication in Xenobots: 

novel competencies of the agential material

Douglas Blackiston
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Anthrobots; can you guess the genome?

Where do
the properties

of novel
systems come

from if not
eons of selection

or explicit
engineering?

Gizem Gumuskaya

Could you guess 
the genome from 

these data?

Could you guess 
behavior and form 
from the genome?
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Anthrobots Exert Neural Repair
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No Selection History Explains Form and Behavior:

drastically

remodeled


transcriptome

www.advancedsciencenews.com www.advancedscience.com

Figure 2. Anthrobots self-organize into discrete movement types. A) Anthrobots display different movement types. Scalebar 100 uM. B) Distribution of
all 30-second periods in the analysis plotted by their straightness and gyration indices, showing signs of clustering near three of the 4 corners of the plot.
C) Clustered scatter plot of all 30 s periods with centers of cluster marked and colored. D) Prototypical examples from each cluster with 30 s sample
trajectories. E) Quantitative comparison of key characteristics of the four clusters in terms of intra-cluster homogeneity “average dissimilarity”) and
occurrence frequency (“% of observations”) which show that the largest clusters 1 and 2 have relatively low dissimilarity indicating these are the most
consistent behavioral patterns. F) Comparison of gyration and straightness indices for each cluster with significance levels indicated, showing that each
cluster occupies a unique, quantifiable position in the sample space. P-value range after pairwise 2-sample t-test of 0 to 0.0001 corresponded to ****,
0.0001 to 0.001 corresponded to ***, 0.001 to 0.01 corresponded to **, 0.01 to 0.05 corresponded to * and 0.05 to 1 corresponded to ns. Cluster one
had 6004 30 s periods, cluster two had 6700, cluster three had 3436 and cluster 4 had 2384. G) Markov chain showing state transitions between different
clusters (same as in Figure 2F) and the degree of commitment to a given behavior (persistence), with the circular bots (type 1) as the most committed
category with 92.1% chance of the next period being a circular if the current period is a circular. It is followed by linear and curvilinear, which are also
relatively consistent at 80.0% and 75.3% respectively. Cluster 4, or the eclectics, as expected, are very unstable, with a consistency of only 39.6%. Cluster
4 seems to act as a sort of intermediate, since there is a substantial chance of the eclectics converting to linear (34.5%) or to a lesser degree circular
(15.0%) or curvilinear (10.7%). The transition probability between circulars and linear and vice versa is the lowest and almost nonexistent, at 0.3% and
0.2% respectively. Linear, curvilinear, and circulars rarely convert into eclectics with a probability of 12.3%, 7.5%, 5.8% respectively (and when they do,
it is most likely due to collisions or using eclectics as an intermediary).
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Developmental Time Behavior
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Biobots have Standard Genomes

Novel Morphology, Transcriptomes, Behaviors

Douglas Blackiston

• Xenobot bodies and minds have no straightforward evolutionary back story; whence their specific 
competencies?


• We know when computation was done to make a frog; when was it done for Xenobots/Anthrobots?

• “Emergence”? What degree of specificity between history and outcome does evolutionary theory imply?
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Abstract: Trainability, in any substrate, refers to the ability to change future behavior based on past
experiences. An understanding of such capacity within biological cells and tissues would enable a
particularly powerful set of methods for prediction and control of their behavior through specific
patterns of stimuli. This top-down mode of control (as an alternative to bottom-up modification
of hardware) has been extensively exploited by computer science and the behavioral sciences; in
biology however, it is usually reserved for organism-level behavior in animals with brains, such as
training animals towards a desired response. Exciting work in the field of basal cognition has begun
to reveal degrees and forms of unconventional memory in non-neural tissues and even in subcellular
biochemical dynamics. Here, we characterize biological gene regulatory circuit models and protein
pathways and find them capable of several different kinds of memory. We extend prior results on
learning in binary transcriptional networks to continuous models and identify specific interventions
(regimes of stimulation, as opposed to network rewiring) that abolish undesirable network behavior
such as drug pharmacoresistance and drug sensitization. We also explore the stability of created
memories by assessing their long-term behavior and find that most memories do not decay over
long time periods. Additionally, we find that the memory properties are quite robust to noise;
surprisingly, in many cases noise actually increases memory potential. We examine various network
properties associated with these behaviors and find that no one network property is indicative of
memory. Random networks do not show similar memory behavior as models of biological processes,
indicating that generic network dynamics are not solely responsible for trainability. Rational control
of dynamic pathway function using stimuli derived from computational models opens the door
to empirical studies of proto-cognitive capacities in unconventional embodiments and suggests
numerous possible applications in biomedicine, where behavior shaping of pathway responses stand
as a potential alternative to gene therapy.

Keywords: biological network; training; memory; association; pharmacoresistance; sensitization

1. Introduction

Brains enable remarkable behavioral capacities and are required for the complex
cognitive abilities and first-person experience that evolved human and other animals
possess. However, it is critical to remember that each of us has taken the journey across the
Cartesian Cut [1]—smoothly and slowly transforming from a bag of biochemical reactions (a
quiescent oocyte) into an adult form, capable of rational thought, metacognition, and a sense
of selfhood as distinct from “insentient objects”. To the extent that “ontogeny recapitulates
phylogeny” [2], taking evolution and developmental biology seriously means seeking to
understand primitive forms of cognition as a spectrum that could extend to unconventional
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Causal Emergence & Learning

• Integration -> learning

• Is the reverse true??
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Abstract: The causal structure of any system can be analyzed at a multitude of spatial and temporal
scales. It has long been thought that while higher scale (macro) descriptions may be useful to
observers, they are at best a compressed description and at worse leave out critical information and
causal relationships. However, recent research applying information theory to causal analysis has
shown that the causal structure of some systems can actually come into focus and be more informative
at a macroscale. That is, a macroscale description of a system (a map) can be more informative than
a fully detailed microscale description of the system (the territory). This has been called “causal
emergence.” While causal emergence may at first seem counterintuitive, this paper grounds the
phenomenon in a classic concept from information theory: Shannon’s discovery of the channel
capacity. I argue that systems have a particular causal capacity, and that different descriptions of
those systems take advantage of that capacity to various degrees. For some systems, only macroscale
descriptions use the full causal capacity. These macroscales can either be coarse-grains, or may
leave variables and states out of the model (exogenous, or “black boxed”) in various ways,
which can improve the efficacy and informativeness via the same mathematical principles of how
error-correcting codes take advantage of an information channel’s capacity. The causal capacity of a
system can approach the channel capacity as more and different kinds of macroscales are considered.
Ultimately, this provides a general framework for understanding how the causal structure of some
systems cannot be fully captured by even the most detailed microscale description.

Keywords: emergence; causality; information theory; modeling

1. Introduction

Debates over the causal role of macroscales in physical systems have been so far both unresolved
and qualitative [1,2]. One way forward is to consider this issue as a problem of causal model choice,
where each scale corresponds to a particular causal model. Causal models are those that represent the
influence of subparts of a system on other subparts, or over the system as a whole. A causal model
may represent state transitions, like Markov chains, or may represent the influence or connectivity of
elements, such as circuit diagrams, directed graphs (also called causal Bayesian networks), networks
of interconnected mechanisms, or neuron diagrams. Using causal models in the form of networks
of logic gates, actual causal emergence was previously demonstrated [3], which is when the macro
beats the micro in terms of the efficacy, informativeness, or power of its causal relationships. It is
identified by comparing the causal structure of macroscales (each represented by a particular causal
model) to their underlying microscale (another causal model), and analyzing both quantitatively
using information theory. Here it is revealed that causal emergence is related to a classic concept in
information theory, Shannon’s channel capacity [4], thus grounding emergence rigorously in another
well-known mathematical phenomenon for the first time.

There is a natural, but unremarked upon, connection between causation and information
theory. Both causation and information are defined in respect to the nonexistent: causation relies on
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Causal interactions within complex systems can be analyzed at
multiple spatial and temporal scales. For example, the brain can be
analyzed at the level of neurons, neuronal groups, and areas, over
tens, hundreds, or thousands of milliseconds. It is widely assumed
that, once a micro level is fixed, macro levels are fixed too, a rela-
tion called supervenience. It is also assumed that, although macro
descriptions may be convenient, only the micro level is causally
complete, because it includes every detail, thus leaving no room
for causation at the macro level. However, this assumption can only
be evaluated under a proper measure of causation. Here, we use
a measure [effective information (EI)] that depends on both the
effectiveness of a system’s mechanisms and the size of its state
space: EI is higher the more the mechanisms constrain the system’s
possible past and future states. By measuring EI at micro and macro
levels in simple systemswhose micro mechanisms are fixed, we show
that for certain causal architectures EI can peak at a macro level in
space and/or time. This happens when coarse-grained macro mecha-
nisms are more effective (more deterministic and/or less degenerate)
than the underlyingmicro mechanisms, to an extent that overcomes
the smaller state space. Thus, although the macro level supervenes
upon the micro, it can supersede it causally, leading to genuine causal
emergence—the gain in EI when moving from a micro to a macro
level of analysis.

In science, it is usually assumed that, the better one can char-
acterize the detailed causal mechanisms of a complex system,

the more one can understand how the system works. At times, it
may be convenient to resort to a “macro”-level description, ei-
ther because not all of the “micro”-level data are available, or
because a rough model may suffice for one’s purposes. However,
a complete understanding of how a system functions, and the
ability to predict its behavior precisely, would seem to require the
full knowledge of causal interactions at the micro level. For ex-
ample, the brain can be characterized at a macro scale of brain
regions and pathways, a meso scale of local populations of neu-
rons such as minicolumns and their connectivity, and a micro scale
of neurons and their synapses (1). With the goal of a complete
mechanistic understanding of the brain, ambitious programs have
been launched with the aim of modeling its micro scale (2).
The reductionist approach common in science has been suc-

cessful not only in practice, but has also been supported by
strong theoretical arguments. The chief argument starts from the
intuitive notion that, when the properties of micro-level physical
mechanisms of a system are fixed, so are the properties of all its
macro levels—a relation called “supervenience” (3). In turn, this
relation is usually taken to imply that the micro mechanisms do
all of the causal work, i.e., the micro level is causally complete.
This leaves no room for any causal contribution at the macro
level; otherwise, there would be “multiple causation” (4). This
“causal exclusion” argument is often applied to argue against the
possibility for mental causation above and beyond physical cau-
sation (5), but it can be extended to all cases of supervenience,
including the hierarchy of the sciences (6).
Some have nevertheless argued for the possibility that genuine

emergence can occur. Purported examples go all of the way from
the behavior of flocks of organisms (7) to that of ant colonies (8),
brains (9), and human societies (10). Unfortunately, it remains
unclear what would qualify some systems as truly emergent and

others as reducible to their micro elements. Also, most arguments
in favor of emergence have been qualitative (11). A convincing
case for emergence must demonstrate that higher levels can be
causal above and beyond lower levels [“causal emergence” (CE)].
So far, the few attempts to characterize emergence quantitatively
(12) have not been based on causal models.
Here, we make use of simple simulated systems, including neural-

like ones, to show quantitatively that the macro level can causally
supersede the micro level, i.e., causal emergence can occur. We do
so by perturbing each system through its entire repertoire of pos-
sible causal states (“counterfactuals,” in the general sense of alter-
native possibilities) and evaluating the resulting effects using
“effective information” (EI) (13). EI is a general measure for causal
interactions because it uses perturbations to capture the effective-
ness/selectivity of the mechanisms of a system in relation to the size
of its state space. As will be pointed out, EI is maximal for systems
that are deterministic and not degenerate, and decreases with
noise (causal divergence) and/or degeneracy (causal convergence).
For each system, we completely characterize the causal mech-

anisms at the micro level, fixing what can happen at any macro
level (supervenience). Macro levels are defined by coarse graining
the micro elements in space and/or time, and this mapping defines
the repertoire of possible causes and effects at each level. By
comparing EI at different levels, we show that, depending on how
a system is organized, causal interactions can peak at a macro
rather than at a micro spatiotemporal scale. Thus, the macro may
be causally superior to the micro even though it supervenes upon
it. Evaluating the changes in EI that arise from coarse or fine
graining a system provides a straightforward way of quantifying
both emergence and reduction.

Theory
In what follows, we consider discrete systems S of connected binary
micro elements that implement logical functions (mechanisms)
over their inputs. We first introduce a state-dependent measure of
causation, the “cause” and “effect information” of a single

Significance

Properly characterizing emergence requires a causal approach.
Here, we construct causal models of simple systems at micro
and macro spatiotemporal scales and measure their causal ef-
fectiveness using a general measure of causation [effective
information (EI)]. EI is dependent on the size of the system’s
state space and reflects key properties of causation (selectivity,
determinism, and degeneracy). Although in the example sys-
tems the macro mechanisms are completely specified by their
underlying micro mechanisms, EI can nevertheless peak at a
macro spatiotemporal scale. This approach leads to a straight-
forward way of quantifying causal emergence as the super-
sedence of a macro causal model over a micro one.
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corresponds to the average of the cause coefficients (weighted by
the probability of the effects). In other words, within a time-
invariant system the average selectivity of the causes corre-
sponds to the average selectivity of the effects. Note that, in
principle, other measures of causation that, like EI, reflect
causal structure (selectivity, determinism, degeneracy) and
system size, should demonstrate causal emergence as well.
The main result obtained in the simulations is that coarse

graining, both in space and in time, can yield a higher value of
EI. This happens even though the micro has, by definition, a
larger state space than the macro—an advantage with respect to
EI. Given this inherent advantage of the micro, it is under-
standable why the default scientific strategy for analyzing systems
has been one of reduction (Causal Reduction). However, the
examples presented above show that the inherent loss in EI due to
the macro’s smaller repertoire size can be offset if the macro
achieves a greater gain in effectiveness. In turn, greater effective-
ness stems from macro mechanisms constructed from their con-
stituting micro mechanisms in such a way that, at the macro level,
determinism is increased and/or degeneracy is decreased. Genuine
causal emergence can then be said to occur whenever there is
a gain in EI (CE > 0) at the optimal macro level. If instead there is
a loss in EI (CE < 0), causal reduction is appropriate, and the
micro level is the optimal level of causal analysis. The causal
approach pursued here suggests that qualitative or noncausal
accounts of emergence may have been hindered by not being
able to characterize how and why a macro level can actually
have greater causal effectiveness than a micro level (22, 23).

Micro Macro Mappings and Repertoires of Alternatives. The present
approach makes it possible to compare causation at the micro
and macro levels in a fair manner. First, the simulated examples
are such that the macro supervenes strictly upon the micro: once
the micro is defined, all macro levels are fixed. Specifically, no extra

causal ingredients are added at the macro level, such as rules that
apply to the macro only (24). Furthermore, the mapping of micro
into macro elements is such that the identity of micro elements is
lost; otherwise, the macro level would have access to micro-level
information that could offset its reduced repertoire size. Finally,
when causation is evaluated a uniform distribution of alternatives
is imposed independently at the micro and macro levels. For this
uniform distribution of perturbations to be imposed at the macro
level, the probability of the underlying micro perturbations must
be modified by averaging the micro states that map into the same
macro state. The modified distribution of micro perturbations
yielding a uniform distribution of macro perturbations makes EI
sensitive to the causal structure at each level, ultimately allowing
the supervening macro EI to exceed the micro EI.

Emergence as an Intrinsic Property of a System. EI is a causal mea-
sure, because it requires perturbing the system in all possible ways
and evaluating the resulting effects on the system. It is also an
informational measure, because its value depends on the size of
the repertoire of alternatives. Indeed, in the present approach,
causation and information are necessarily linked (25), hence
the term “effective information.” Finally, measuring EI reveals an
“intrinsic” property of the system, namely the average effectiveness/
selectivity of all possible system states with respect to the system
itself. Effectiveness/selectivity can be assessed at multiple spatio-
temporal grains, and the particular spatiotemporal grain at which
EI reaches a maximum is again an intrinsic property of the system.
This in no way precludes an observer from profitably investigating
the system’s properties at other macro levels, at the micro level, or
at multiple levels at once (e.g., neuroscientists studying the brain at
the level of ion channels, individual neurons, local field potentials,
or functional magnetic resonance signals). However, causal
emergence implies that the macro level with highest EI is the one
that is optimal to characterize, predict, and retrodict the behavior
of the system—the one that “carves nature at its joints” (26).

The search for the macro level at which EI is maximal has a par-
allel in information theory: channel capacity is an intrinsic property
defined as the maximal amount of information that can be trans-
mitted along the channel at a certain rate, found by searching over all
possible input distributions (27). Finding the optimal level of coarse
graining for causal emergence is based on a similar search, with
several differences. First,EI is evaluated using perturbations over the
system itself, rather than across a channel (the system is its own input
and output). Second, the probability distributions over micro states
that can be considered must conform to a proper mapping of micro
into macro elements (or time intervals). Additional connections of
causal emergence to established measures, such as reversibility

Fig. 5. Temporal causal emergence. (A) Sm is composed of second-order Mar-
kov mechanisms A and B: at t0, each mechanism responds based on the inputs at
t−2 and t−1, and outputs over t0 and t+1. (B) Causal analysis over one micro time
step gives an incomplete view of the system. (C) A causal analysis over two micro
time steps reveals the second-order Markov mechanisms. (D) The optimal macro
system SM groups two micro time steps into one macro time step for macro
elements {α,β}. (E) Each coarse grained macro mechanism effectively corresponds
to a deterministic COPY gate. (F) The macro one-time step TPM SM has Eff(SM) =
1, and the micro two-time step TPM has Eff(Sm) = 0.34; CE = 0.62 bits.

Fig. 6. Spatiotemporal causal emergence. (A) A “neuronal” system merging
the temporal characteristics of the system in Fig. 5 with a differentiated
spatial structure (Fig. S2). Regular and rounded arrows indicate intergroup
and intragroup connections, respectively. (B) Each macro element receives
inputs from itself and the other macro element. The macro level beats the
micro level, leading to spatiotemporal emergence [CE(S) = 2.92 bits].
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Associative conditioning in gene
regulatory network models increases
integrative causal emergence

Check for updates

Federico Pigozzi1, Adam Goldstein2 & Michael Levin 1,3

How does learning affect the integration of an agent’s internal components into an emergent whole?
We analyzed gene regulatory networks, which learn to associate distinct stimuli, using causal
emergence,which captures thedegree towhich an integrated system ismore than the sumof its parts.
Analyzing 29 biological (experimentally derived) networks before, during, after training, we discovered
that biological networks increase their causal emergence due to training. Clustering analysis
uncovered five distinct ways in which networks’ emergence responds to training, not mapping to
traditional ways to characterize network structure and function but correlating to different biological
categories. Our analysis reveals how learning can reify the existence of an agent emerging over its
parts and suggests that this property is favored by evolution.Our data have implications for the scaling
of diverse intelligence, and for a biomedical roadmap to exploit these remarkable features in networks
with relevance for health and disease.

When is a system more than the sum of its parts? When and how do the
properties of active components enable the emergence of a high-level,
integrated decision-making entity1–5? These questions bear on issues in
ecology, philosophymind, psychiatry, swarm robotics, and developmental
biology6–13. In a sense, all intelligence is collective intelligence14,15 because
even humanminds supervene on a collection of cells which are themselves
active agents.Onepracticalway todefine integrated emergent systems is by
the fact that they have goals, memories, preferences, and problem-solving
capabilities that their parts do not have. For example, while individual cells
solve problems in metabolic, physiological, and transcriptional spaces,
what makes an embryo more than a collection of cells is the alignment of
cellular activity toward a specific outcome in anatomical morphospace16.
Here, we focus on one aspect of emergent agency: integrated, distributed
memory.

When a rat learns to press a lever to receive a reward, the cells at the
paw touch the lever, those in the gut receive the delicious food - no
individual cell has both experiences. The “rat” is the owner of the asso-
ciative memory that none of its parts can have. This ability to bind
together individual experiences of their parts is a hallmark of emergent
agents. The rat can do associative learning because it has the right causal
architecture (implemented by the nervous system) to integrate infor-
mation across space and time within its body. However, this ability is not
unique to brainy animals—various kinds of problem-solving and
learning occur in single cells (reviewed in refs. 17–19) because biology

fundamentally exploits a multi-scale competency architecture in which
themolecular components within a cell are likewise integrated to provide
system-level context-sensitive responses.

Regardless of specific material implementation, certain functional
topologies exhibit high emergent integration. In recent years, this topic has
moved from philosophical debates over supervenience and downward
causation to empirical science, as quantitativemethodshavebeendeveloped
to measure a degree to which a system is more than its parts and possesses
higher levels of organization thatdocausalworkdistinct from its lowest level
mechanisms20–23. This now enables a study of the relationship between
minimal cognition and collective intelligence. A degree of integration
among parts is required for any amount of cognitive function, such as
learning. Here, we explore the inverse hypothesis: could the process of
learning increase integration within a system? That is, could training a
system reify and strengthen the existence of it as a unified, emergent, virtual
governor24?

To study this question in themostminimal model system, in which all
the components are well-defined, deterministic, and transparent, we chose
Gene Regulatory Networks. GRN models represent sets of gene products
that up- or down-regulate each other’s activity based on a given functional
connectivity map25. These networks are very important topics in
biomedicine26–28, evolutionary developmental biology29–31, and synthetic
biology32–35. It is essential to be able to not only predict their behaviors, but
also to induce desired dynamics for interventions in regenerative medicine

1Allen Discovery Center at Tufts University, Medford, MA, USA. 2Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. 3Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. e-mail: michael.levin@allencenter.tufts.edu
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Extending Iterated, Spatialized Prisoner’s Dilemma
to Understand Multicellularity: Game Theory With

Self-Scaling Players
Lakshwin Shreesha , Federico Pigozzi , Adam Goldstein , and Michael Levin

Abstract—Evolutionary developmental biology, biomedicine,
neuroscience, and many aspects of the social sciences are
impacted by insight into forces that facilitate the merging of
active subunits into an emergent collective. The dynamics of
interaction between agents are often studied in game theory,
such as the popular Prisoner’s Dilemma (PD) paradigm, but the
impact of these models on higher scales of organization, and
their contributions to questions of how agents distinguish borders
between themselves and the outside world, are not clear. Here
we applied a spatialized, iterated PD model to understand the
dynamics of the formation of large-scale tissues (colonies that
act as one) out of single cell agents. In particular, we broke
a standard assumption of PD: instead of a fixed number of
players which can Cooperate or Defect on each round, we let
the borders of individuality remain fluid, enabling agents to also
Merge or Split. The consequences of enabling agents’ actions to
change the number of agents in the world result in non-linear
dynamics that are not known in advance: would higher-level
(composite) individuals emerge? We characterized changes in
collective formation as a function of memory size of the subunits.
Our results show that when the number of agents is determined
by the agents’ behavior, PD dynamics favor multicellularity,
including the emergence of structured cell-groups, eventually
leading to one single fully-merged tissue. These larger agents
were found to have higher causal emergence than smaller ones.
Moreover, we observed different spatial distributions of merged
connectivity vs. of similar behavioral propensities, revealing
that rich but distinct structures can coexist at the level of
physical structure and the space of behavioral propensities. These
dynamics raise a number of interesting and deep questions about
decision-making in a self-modifying system that transitions from
a metabolic to a morphological problem space, and how collective
intelligences emerge, scale, and pattern.

Index Terms—Collective intelligence, game theory, iterated
Prisoner’s Dilemma.
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I. INTRODUCTION

A. Emergent Agents and the Scaling of Collective
Intelligence

INTELLIGENCE is fundamentally a collective phenomenon
because all problem-solving agents are made of parts that

must work together toward goals that belong to the collec-
tive [1]. In addition to well-known collective intelligences
such as ant and bee colonies [2], [3], [4], [5], [6], and robot
swarms [7], [8], [9], [10], even seemingly-unified intelligences
such as human beings are composed of cells which must
integrate their activity toward emergent adaptive behavior. An
exciting research program at the intersection of complexity,
information, and cognitive sciences seeks to understand how
the decision-making that guides cooperative and competitive
interactions of active subunits gives rise to new collective
minds [11], [12], [13], [14], [15].

Importantly, the dynamics of collective intelligence are
not limited to behavior of adult organisms during their life-
time. As recognized by Turing [16], the understanding of
the autopoiesis of minds is tightly linked with that of the
self-assembly of bodies during embryogenesis. Both on a
developmental timescale [17], and on an evolutionary one [18],
[19], [20], [21], the dynamics that drive multicellularity are
a critical feature of understanding life and mind. Rational
agents self-assemble from cellular components (which them-
selves assemble from chemical networks that have learning
capacity [22], [23]), as embryos result from a physical and
behavioral alignment of cellular collectives navigating the
space of anatomical configurations. While the mechanisms of
these processes are beginning to be understood, many impor-
tant questions abound with respect to how the decision-making
of individual cells and their local physiological/metabolic
goals give rise to emergent problem-solving in anatomical
space and eventual intelligence in behavioral space [24].

While game theory [25], [26] studies the forces that shape
interactions between agents, it has not been sufficiently inte-
grated with formalisms that describe the origin and scaling of
agents out of their constituent parts [27], [28]. What allows us
to recognize an embryo (an individual) vs. a large collection
of independent cells? During embryogenesis, every cell has
some other cell as a neighbor, but embryos arise when cells
merge into physiological signaling networks that cooperate
toward morphogenetic goals (creating the correct species-
specific anatomy) because of shared memories and stress
landscapes [17], [29].

c© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 6. Morphological Patterns emerge as a result of Successive Merges. Snapshots of the World State at different periods during gameplay in an IPD-ms
simulation of 400 agents arranged in a 20 x 20 grid, each with a fixed memory size of 2. Colors denote merged tissues of different tissue sizes (“cluster
size”). Panel A: Initially (A.I), the World State was composed of agents of tissue-size 1; tissue sizes increased or decreased owing to Merge or Split actions
taken by agents respectively. Patterns shown here are the result of Lanczos interpolation [48] of each agent considered separately. Panel B: Heatmap of the
probability of finding a combination of tissue sizes next to one another. Rows and columns depict tissue sizes. A cell (X, Y) within the heatmap indicates the
probability of finding an agent with tissue size X, next to a separate agent with tissue size Y. Panel C: Snapshot of a region within the World State depicting
the obfuscation of agential borders. Colors denote tissues of a specific size as represented by the color bar. Grid lines are drawn to visually assist the reader
in accounting for merged agents. Dashed, cilia-like, colored borders denote ground truth anatomical boundaries, without which the illusory presence of a
coherent whole (blue blobs on the upper part of the snapshot) becomes a convincing deception.

columns over sizes Y, with any (X, Y) combination taken to be
the probability of finding a cluster of size X next to a cluster
of size Y. We observed that small sized tissues (with sizes in
the range of 1 − 50) (Y variable in Fig. 6B) tended to cluster

around agents of every possible anatomical-size (X variable in
Fig. 6B), indicating that irrespective of the tissue size of an
agent, a smaller sized agent (with a tissue size less than 50)
could be expected in its neighborhood with high probability.
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A consequence of proximal organization is the question
of boundaries: if two similar sized clusters were next to
one another, how would an external observer demarcate their
individual boundaries? How likely would it be for an observer
to mistake them for a single continuous agent? For instance,
consider a section of the World State (with grid lines drawn
for visual support) as shown in Fig. 6.C. The snapshot shown
contains multiple agents of similar size, grouped close to one
other. We draw attention of the reader to two such groups
marked by dashed-boundaries on the left hand side of the
grid. Without explicitly drawn ground-truth information on
their agential boundaries, it would be natural for an external
observer looking at a snapshot of the population at a specific
timestep to treat these adjacently placed agents as a single
agent, while in fact they are multiple agents with independent
policies. Such misattribution illustrates the difficulty of trying
to ascertain the boundaries between goal-directed autonomous
agents (and the outside world) from structural observations
of a multiscale complex system. In effect, this illustrates the
emergence of structurally contiguous tissues with physiolog-
ical regionalizations that are not apparent at the anatomical
level.

We conclude that IPD dynamics allowing fluid agent bound-
aries progressively result in the emergence of clusters, with
relatively smaller sized “tissues” clustering around relatively
larger sized aggregates. Thus, IPD dynamics give rise to rich
emergent spatial (morphological) patterning reminiscent of
biological organization, but the attribution of behavioral coher-
ence within and between clusters cannot be made exclusively
from this topological information.

F. Integrated Information Theory highlights That Larger
Agents are More Integrated With the Environment Than
Smaller Ones

Having identified emergent spatial structure in this system,
we investigated one other crucial component of larger-scale
clusters: information integration. A significant literature [49],
[50], [51], [52], [53], [54], [55], [56], [57], [58] shows how
higher levels of organization, in some architectures, acquire
integrated autonomy and become agents that significantly
supervene over their parts. Is there a sense in which the
organization induced by multicellular merged clusters exhibits
significant information integration?

To this end, we checked whether large sized agents pos-
sessed a greater degree of cohesiveness with their environment
compared to smaller sized agents as they played games of IPD-
ms (Fig. 7). Specifically, we simulated an IPD-ms population
consisting of 400 agents, arranged in a 20x20 grid, each with
a fixed memory size of 4, run until the emergence of a fully-
merged unified agent (which was found to be at ≈ 2.7 k
games). At each game step, we recorded agents’ tissue size
and used it to calculate their aggregate information integra-
tion with their environment using the Integrated Information
Decomposition metric, φr [59]. Specifically, we considered
an IPD-ms population of N agents, denoting An as the nth

agent (n ∈ N ) surrounded by the set of other agents (termed
collectively as the environment, E). The overall World State

Fig. 7. Integrated Information Theory highlights that larger agents are more
integrated with the environment than smaller ones. In Integrated Information
Theory, φr measures the degree to which a system’s elements are integrated.
A system with high φr implies agents with high interconnectivity, with the
system as a whole behaving in a way that can’t be explained by the sum of
its parts. Panel A: In our framework, nodes represent agents, and the edges
represent actions. Nodes grouped under dashed ellipses (as in A.II or A.III)
are representative of merged agents behaving as a single unit. Merged groups
behaving as a whole (red ellipse in A.II) carry a higher φr value compared
to those merged groups with fewer agents (orange and black ellipses in A.II).
Panel B: Blue fluctuating graph: median ± standard deviation (across random
seeds) of φr for different agent sizes. Dashed red line: the least- squares
linear regression fit, with a significantly positive slope (p ! 0.01) indicating
that as agent-size increases, integration between the agent and the rest of the
environment increases, suggesting that larger subunits make the whole game
behave in a way that the single parts cannot fully explain.

at any timestep t, could then be expressed as a variable, X =
(An ,E ), and φr could be calculated as:

φr = I ( X (t),X (t + 1) ) − I ( An (t),An (t + 1) )

− I ( E (t),E (t + 1) ) (7)

where I is the Shannon mutual information.
In essence, φr computed the information that the whole

carried about its future minus the information that the parts
carried about themselves. Intuitively, a high φr implied that the
system behaved in a manner which could not be completely
explained by the sum of its parts.

In our case, we observed that an increase in the size of an
agent led to a corresponding increase in the fluctuation of φr .
A linear regression fit over these fluctuations yielded a positive
slope (red dotted line, Fig. 7B). The slope of the regression
line was found to be significantly positive (p $ 0.01), indicat-
ing that as an agent’s size increased, integration between the
agent and the rest of the environment increased as well. Our
result suggests that larger subunits influence future IPD-ms
dynamics in a way that single parts cannot completely explain,
and demonstrates quantiatively that higher sized agents tend
to causally emerge from lower sized agents during IPD-ms
games.
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Fig. 8. Agential boundaries can be anatomical or behavioral. Panel A:
Anatomical and behavioral boundaries over the course of simulation within
the two-dimensional World State. Top row sub-panels (A.I, A.II, A.III) depict
anatomical boundaries color-coded by their respective tissue-size. Bottom row
sub-panels depict behavioral boundaries (A.IV, A.V, A.VI), color-coded by
agents’ playing strategies. Strategies are defined as memory sequences of size
less than or equal to three. The color bar (in A.IV, A.V, A.VI) indicates color-
strategy relationships of the five most frequent options played at any point
in time. Strategy “x” is assumed to represent those agents which have not
played IPD-ms games so far. Panel B: Relationship between Transfer Entropy
and Lag Duration (tt ). Transfer Entropy from a sequence X → Y is the
degree of uncertainty reduced in future values of Y, given past values of X
and Y from an instant in the present. The length of the past is based on
the Lag-period duration tt , and is set here to values ranging from [1, 120]
game steps. Transfer Entropy between sequences of Anatomy → Behavior
(red trace) or Behavior → Anatomy (black trace) was calculated at each lag-
duration (tt ) and was reported as a spatially averaged value over all agents.
Shaded areas are indicative of standard deviation over 5 independent runs of
IPD-ms experiments initialized with 400 agents each with a fixed memory
size of 2.

G. Agential Boundaries Can be Anatomical or Behavioral

Agents are commonly treated as goal-directed entities
occupying physical space. However, self-reinforcing persistent
dynamical states (patterns in an excitable medium) can exist
in other spaces as well [60], [61], [62], [63], and it has been
pointed out that agential biological systems also are temporary
patterns of metabolism, genetic information, and memory [64],
[65], [66], [67], and that different observers focused on
measuring different quantities in a system might see very
different patterns and draw boundaries between active agents
very differently [68]. Thus, it becomes interesting to track
not only the physical pattern of connectivity (ground truth of
which agents are merged with which other agents), but also the
informational patterns that could persist and spread through the
population in a way that doesn’t respect physical boundaries
between agents [69]. Behavioral space, for instance, is the
space of all possible strategies for managing sensing/actuation
mappings of an agent during its lifetime. Multiple agents

depicting identical behaviors can appear “merged” to an
external observer, who sees behavior but not the internal
states of agents, despite their physical boundaries remaining
intact. Thus, to check the extent to which the behavioral space
became patterned differently from anatomical space in this
model, we analyzed instances of the same simulation: one
where we color-coded agents by their physical boundaries, and
a second where we color-coded agents by their personalities
(the strategies they chose to play) (Fig. 8A).

To this end, four hundred agents, each with a fixed memory
size of 2, arranged in a 20x20 grid, played games of IPD-
ms. We investigated patterns of agent borders and groupings
in two different spaces by visualizing agents according to
(1) physical boundaries (anatomical contours) and (2) by
the strategies played by agents (behavioral contours) (see
Supplement 1 for details). We observed that agential bound-
aries revealed by these two perspectives differed dramatically.
Early during simulation (by game number 40), we found
agents grouped into common behavioral boundaries despite not
having physically merged (Fig. 8A.I, 8A.IV). As simulation
progressed this effect increased, to an extent that by game
number 260, behavioral boundaries were unrecognizable from
their anatomical boundaries, their complexity outrunning the
pace of anatomical merges (Fig. 8A.III, 8A.VI). We conclude
that emergent patterns and boundaries between agents (which
differ in physical connectivity or in behavior) can be different,
depending on what observables are analyzed in the population.

Given these two different perspectives on the boundaries
of agents in this system, we sought to characterize their
respective causality: whether the anatomical, or the behavioral,
patterns influenced each other. Specifically, we characterized
how much of the past of one variable, (anatomy or behavior)
influenced the future values of the other, testing different
lengths of possible lag in the causality. To quantify this, we
calculated the Transfer Entropy (TE) [70], [71], [72], [73]
between anatomy and behavior for each of the 400 agents
at different lagged intervals (tt ), by recording sequences of
cluster-size and behavior during simulation (see Supplement
1 for details).

We observed that TE values from anatomy to behavior
(A-B) were higher than the TE from behavior to anatomy
(B-A) across Lag Durations ranging from 1 up to 120 games
(Fig. 8B). At a Lag Duration of 1, a strong bidirectional
relationship between anatomy and behavior was observed.
With an increase in Lag Duration, TE in either direction
decreased, with TE from B-A decreasing at a relatively higher
rate. Interestingly, over Lag Durations spanning 20 to 60
games, TE from B-A was found to be negative, indicating that
behavioral patterns increased (rather than decreased) future
uncertainty in anatomical patterns, playing a negative role
in its causal influence. But reverse-causality did not persist,
and post a Lag Duration of 60, TE from B-A progressively
increased. We note however that, despite such an increase,
its absolute values remained significantly below that of its
reciprocal relationship (A-B) through Lag Durations up to 120
games.

Our observations suggest a coupled influence between
behavioral and anatomical patterns on multiple time scales;
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Fig. 1. Schematic of experimental setup (IPD-ms). Panel A, Game World Description: Agents are arranged at discrete positions in a rectangular matrix (the
World State, A.I). In each round, an agent and a neighbor are selected at random to play a game of Prisoner’s Dilemma (PD). Agents maintain memory of
their past, and use it to sample actions from a policy table. Panel A.II, Payoff table: Agents play one of four actions (Cooperate, Defect, Merge, or Split).
During a game, either player can initiate a merge by playing the Merge action; similarly, either agent can play the Split action to break into constituent units
(provided they can be broken down into simpler parts). Panel B, Rollout of a single PD game: A game is played between two agents. Each agent assesses
the state it is in by consulting its memory and uses the resulting state to sample one of four actions: Cooperate, Defect, Merge, or Split using its policy table.
Once both agents play an action, the payoff table is consulted and corresponding rewards are stored (A.II). Policy tables are updated using the Q-learning
rule, and sampled actions are appended to players’ memories. Finally, the World State is updated to reflect these changes. Panel C, Concept of Merge and
Split: During any game, two special situations exist: if at the N th game between two agents, either of them select Merge as their intended action, then these
agents are allowed to coalesce into a single new agent. The new agent derives its memory, policy, and payoff score from the best performing constituent
agent. Once merged, the constituent agents cease to exist, and the new agent functions by occupying the constituents’ positions on the grid (C.III). A second
unique situation concerns splitting. If during any game, either of the agents choose the Split action, then they have the optionality to split. For a split to occur,
an agent must be a composite (eg: Agent-50 in C.IV), else the Split action does nothing. In case a split occurs, the composite agent splits, transferring its
policy, memory, and payoff scores to each constituent. For instance: if after K rounds of IPD-ms, Agent-50 chooses to split during a game with Agent-15,
it splits into its parental constituents (Agent-49 and Agent-5 in this case) transferring its policy, memory, and payoff-scores to each. The constituent agents
assume their original positions on the grid, and continue to play IPD-ms games. Agent-50 is destroyed.

(initially empty), and b) a policy table mapping memory states
to actions, initialized to random values. Agents were by design
restricted to play IPD games with their neighbors, including
on diagonals (Moore neighborhood).

A single game unfolded as follows: An agent (say, the
Challenger) and one of its neighbors (say, the Opponent)
were chosen at random (Fig. 1B.I). To determine which action
to play, the Challenger constructed a “memory state”, and
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Main Points:
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Conclusion 1: summary
• Intelligence is not magic or mysterian - many tools exist to rigorously, quantitatively probe (not 
assume, not guess) the degree and kind of cognition in unfamiliar substrates. 

• Genotype -> Phenotype map (morphogenesis) is a problem-solving, creative process not well-
captured by “emergence” and “complexity science” (open-loop models in which there is no goal or 
setpoint). Its IQ along the spectrum of cognitive capabilities is only beginning to be appreciated.

• Morphogenesis is the behavior of a cellular collective intelligence in anatomical morphospace. 
Mechanisms for dynamically interpreting/exploring the 3D world, to handle novelty, are the same 
as for intelligently interpreting one’s genome, so they evolve together – intelligence, creativity, and 
evolvability are same. 

• Those mechanisms are evolutionarily conserved - ion channels, electrical synapses, etc. etc., which 
now allows us to communicate with living matter and prompt (not micromanage) it to novel 
journeys in morphospace (see my other talks)

• Evolving on an agential material breaks a lot of assumptions about evolution. Unreliability of the 
multi-scale material favors creation of improvisation engines, not just solutions of specific 
problems. That is the source of the immense plasticity and reprogrammability of the genetically-
specified hardware, and it makes evolution go much faster.

• Proto-organisms (biobots, chimeras, cyborgs) that have never been on Earth before offer great 
model systems for asking: where do the anatomical, behavioral, transcriptional, and physiological 
setpoints come from if not selection?(c)
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Conclusion 2: speculative future outlook
•Feedback spiral between learning and causal emergence: an upward-facing ratchet increases 
agency with very, very minimal assumptions.  That spiral is a free gift from mathematics, not 
requiring anything from physics or biology.

• It happens long before cells, pathways, or any replicators, and shows the booting-up of 
informational selves before a physical body appears whose continuous upkeep drives 
differential replication.

conventional view
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Conclusion 2: speculative future outlook
•Feedback spiral between learning and causal emergence: an upward-facing ratchet increases 
agency with very, very minimal assumptions.  That spiral is a free gift from mathematics, not 
requiring anything from physics or biology.

• It happens long before cells, pathways, or any replicators, and shows the booting-up of 
informational selves before a physical body appears whose continuous upkeep drives 
differential replication.

•Cognition is wider and older than biology. It’s baked in to very simple systems, but evolution 
scales it greatly.

I suspect:
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Conclusion 2: speculative future outlook
•Patterns of form, physiology, and behavior w/o specific 
selection history for them. Not just patterns - behavioral 
competencies. Are they random and unpredictable 
(“emergent”) or do they come from a structured latent space? 
Mathematicians already study a space of truths that cannot be 
found or changed by physics.  Let’s use living interfaces, 
evolved and engineered, to explore that space.

•Today’s computational formalisms are insufficient to 
understand and relate to biology.  But, they’re also 
insufficient for even minimal systems and so-called 
“machines”. Nothing is only what our models say it is. 

•Fundamental knowledge gaps exist about the relationship 
between biological/physical interfaces and the patterns of form 
and function that animate the hardware.
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Classical sorting algorithms as a model of
morphogenesis: Self-sorting arrays reveal
unexpected competencies in a minimal
model of basal intelligence
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Abstract
The Diverse Intelligence research seeks to understand commonalities in behavioral competencies across a wide range
of implementations. Especially interesting are simple systems that provide unexpected examples of memory, decision-
making, or problem-solving in substrates that at first glance do not appear to be complex enough to implement such
capabilities. We seek to develop tools to determine minimal requirements for such capabilities, and to learn to
recognize and predict basal forms of intelligence in unconventional substrates. Here, we apply novel analyses to the
behavior of classical sorting algorithms—short pieces of code studied for many decades. To study these sorting
algorithms as a model of biological morphogenesis and its competencies, we break two formerly ubiquitous as-
sumptions: top-down control (instead, each element within an array of numbers can exert minimal agency and
implement sorting policies from the bottom up), and fully reliable hardware (instead, allowing elements to be
“damaged” and fail to execute the algorithm). We quantitatively characterize sorting activity as traversal of a problem
space, showing that arrays of autonomous elements sort themselves more reliably and robustly than traditional
implementations in the presence of errors. Moreover, we find the ability to temporarily reduce progress in order to
navigate around a defect, and unexpected clustering behavior among elements in chimeric arrays consisting of two
different algorithms. The discovery of emergent problem-solving capacities in simple, familiar algorithms contributes a
new perspective showing how basal forms of intelligence can emerge in simple systems without being explicitly
encoded in their underlying mechanics.

Keywords
Decentralized intelligence, emergence, sort, minimal models, basal cognition
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1. Introduction
On their respective time scales, evolutionary and de-
velopmental biology require that cognitive capabilities
such as memory and goal-directed activity in the face of
perturbations originate in proto-cognitive functions that
existed long before complex brains came onto the scene
(James, 1890; Jennings, 1906; Lyon, 2006). The gradual
history of intermediate forms with different levels of
competency undermines a view in which discrete natural
kinds have, or do not have, binary properties such as
intelligence (Fields & Levin, 2020; James et al., 2019;
Keijzer et al., 2013; Levin, 2021; Lyon, 2006, 2015).
Moreover, a rich continuum of intermediate forms can be
created by chimerizing biological and technological

material in many different combinations (Clawson &
Levin, 2023; Nanos & Levin, 2022), further eroding
the notion of a binary, categorical separation between
engineered and biological capabilities. The nascent field
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Abstract

Neuroscience, and behavioral science more broadly, seek to char-
acterize the relationship between functional cognition and the un-
derlying processes operating in living tissue. The current paradigm
focuses heavily on the brain, and specific mechanisms thought to
underlie mental content and capabilities. One of the most inter-
esting approaches to any field, which often leads to progress, is to
highlight data which do not comfortably fit a specific dominant
framework. Here, we review clinical and laboratory data in sev-
eral unconventional systems which are not predicted by the current
models in the field. Reduced brain mass or absent brain tissue
without the expected loss of function (e.g. hydrocephalus, hemi-
hydranencephaly), discrepancies between cognitive state and brain
function (e.g. accidental awareness during anesthesia, terminal lu-
cidity), and cases of cognitive abilities exceeding the apparent skill
of the individual, all highlight interesting features of the immense
plasticity of the mapping between cognition and its living substrate.
These cases suggest new avenues for research that at the very least
stretch existing frameworks, and parallels to discoveries being made
in the emergent form and behavior of synthetic constructs. We
speculate on a roadmap for the study of interesting and still poorly-
understood features of embodied minds that could be impactful for
biomedicine and engineering, as well as foundational philosophical
issues.

⇤Corresponding author: 200 Boston Ave, Suite 4600, Bedford, MA 02155, USA,
email: michael.levin@tufts.edu

•See our symposium at(c)
 M

ich
ae

l L
ev

in



More Details Here:

(c)
 M

ich
ae

l L
ev

in



Post-docs and staff scientists in the Levin lab:      
Nestor Oviedo, Junji Morokuma - bioelectrics of planarian regeneration
Benedict Hartl - machine learning and physics approaches to morphogenesis and evolution
Douglas Blackiston - brain-body interface plasticity, Xenobot form and function
Laura Vandenberg, Dany Adams - craniofacial homeostasis
Federico Pigozzi - causal emergence in non-neural substrates

Graduate Students:
Fallon Durant - planarian bioelectric circuit reprogramming
Gizem Gumuskaya, Nikolay Davey - Anthrobots
Sherry Aw - bioelectric eye induction
Lakshwin Shreesha - evolutionary aspects of game theory and competent substrates

Undergraduate Students:
      Pranjal Srivastava, Ben G. Cooper, Hannah Lesser, Ben Semegran, Andrew Bender, 

Douglas Hazel - Anthrobots
      Karina Kofman - anomalies in brain:body mapping

Technical support:
    Rakela Colon, Jayati Mandal - lab management

Erin Switzer - vertebrate animal husbandry
    Joan Lemire - molecular biology

Collaborators:   Allen Center members +
Richard Watson - computational models of cognitive scaling and evolutionary learning

    Joshua Bongard - polycomputing, Xenobot simulations and AI
    Erik Hoel - math of causal emergence
    David Resnik, Lauren Ross - philosophy of causation and biology
    Anil Seth, Robert Chis-Ciure, Blaise Aguierra y Arcas - consciousness in novel substrates
    Olaf Sporns, Sara I. Walker, Thomas F. Varley, Hannah Dromiack, Caitlin Grasso, 

               Douglas Moore, Krishna Srinivasan  - Ca++ neuroscience-relevant infometrics
   Chris Fields - physics of sentience and sentience of physics
    Eva Jablonka, Denis Noble - evolution and cognition
    Giovanni Pezzulo - cognitive science applied to morphogenesis

Simon Garnier - computational analysis of Anthrobot form and function

Model systems:   tadpoles, planaria, slime molds, human cells, animats, hybrots, etc.

Funding support:   JTF, TWCF, DARPA, Paul G. Allen Frontiers Group, Sloan Foundation, NIH, NSF
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